On considère un fibré vectoriel holomorphe et un recouvrement ouvert de , où est une variété complexe non singulière. On démontre alors que les groupes de cohomologie sont isomorphes aux groupes de cohomologie du complexe des cochaînes qui dépendent d’une façon holomorphe des , à condition que soit un ouvert de Stein. Ce résultat est démontré dans le cadre des variétés de Banach. On finit en donnant une application à l’étude des opérations holomorphes d’un groupe réductif complexe sur .
Consider a holomorphic vector bundle and an open cover of , parametrized by a complex manifold . We prove that the sheaf cohomology groups can be computed from the complex of cochains that depend holomorphically on the , provided is a Stein open subset of . The result is proved in the setting of Banach manifolds, and is applied to study representations on cohomology groups induced by a holomorphic action of a complex reductive Lie group on .
@article{AFST_2015_6_24_1_21_0, author = {L\'aszl\'o Lempert}, title = {Representing {Analytic} {Cohomology} {Groups} of {Complex} {Manifolds}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {21--38}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 24}, number = {1}, year = {2015}, doi = {10.5802/afst.1440}, zbl = {1318.32015}, mrnumber = {3325949}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1440/} }
TY - JOUR AU - László Lempert TI - Representing Analytic Cohomology Groups of Complex Manifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 21 EP - 38 VL - 24 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1440/ DO - 10.5802/afst.1440 LA - en ID - AFST_2015_6_24_1_21_0 ER -
%0 Journal Article %A László Lempert %T Representing Analytic Cohomology Groups of Complex Manifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 21-38 %V 24 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1440/ %R 10.5802/afst.1440 %G en %F AFST_2015_6_24_1_21_0
László Lempert. Representing Analytic Cohomology Groups of Complex Manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 1, pp. 21-38. doi : 10.5802/afst.1440. https://afst.centre-mersenne.org/articles/10.5802/afst.1440/
[1] Bailey (T.N.), Eastwood (M.G.), Gindikin (S.G.).— Nonclassical descriptions of analytic cohomology. Proc. 22nd Winter School “Geometry and Physics” (Srní, 2002) Rend. Circ. Mat. Palermo 2 71, p. 93-98 (2003). | MR | Zbl
[2] Bailey (T.N.), Eastwood (M.G.), Gindikin (S.G.).— Smoothly parametrized Čech cohomology of complex manifolds, J. Geom. Anal. 15, p. 9-23 (2005). | MR | Zbl
[3] Baston (R.J.), Eastwood (M.G.).— The Penrose transform. Its interactions with representation theory. Oxford Mathematical Monography, Oxford University Press, New York, 1989. | MR | Zbl
[4] Bredon (G.E.).— Sheaf theory, 2nd edition, Springer, New York, 1997. | MR | Zbl
[5] Bröcker (T.), tom Dieck (T.).— Representations of compact Lie groups, Springer, New York, 1985. | MR | Zbl
[6] Cartan (H.).— Séminaire École Norm. Sup. 4, Fonctions analytiques de plusiers variables complexes, Paris p. 1951-52.
[7] Coeuré (G.).— Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l’étude des fonctions analytiques, Ann. Inst. Fourier (Grenoble) 20, p. 361-432 (1970). | Numdam | MR | Zbl
[8] Dineen (S.).— Complex analysis on infinite–dimensional spaces, Springer, London, 1999. | MR | Zbl
[9] Eastwood (M.G.), Gindikin (S.G.), Wong (H.).— Holomorphic realization of –cohomology and constructions of representations, J. Geom. Phys. 17, p. 231-244 (1995). | MR | Zbl
[10] Gindikin (S.G.).— Holomorphic language for –cohomology and representations of real semisimple Lie groups, Contemp. Math. 154, Amer. Math. Soc., Providence, RI, 1993. | MR | Zbl
[11] Lempert (L.).— Analytic cohomology groups of infinite dimensional complex manifolds, arxiv:1312.7327. | MR
[12] Lempert (L.), Patyi (I.).— Analytic sheaves in Banach spaces, Ann. Scient. Éc. Norm. Sup. 4 série, t. 40, p. 453-486 (2007). | Numdam | MR | Zbl
[13] Lempert (L.), Zhang (N.).— Dolbeault cohomology of a loop space, Acta Math. 193, p. 241-268 (2004). | MR | Zbl
[14] Mujica (J.).— Complex analysis in Banach spaces, North–Holland, Amsterdam, 1986. | MR | Zbl
[15] Nachbin (L.).— Topology on spaces of holomorphic mappings, Springer, New York, 1969. | MR | Zbl
[16] Patyi (I.).— Plurisubharmonic domination in Banach spaces, Adv. Math. 227, p. 245-252 (2011). | MR | Zbl
[17] Serre (J.-P.).— Faisceaux algébriques cohérents, Ann. of Math (2) 61, p. 197-278 (1955). | MR | Zbl
Cité par Sources :