Representing Analytic Cohomology Groups of Complex Manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 1, pp. 21-38.

On considère un fibré vectoriel holomorphe LX et un recouvrement ouvert 𝔘={U a :aA} de X, où A est une variété complexe non singulière. On démontre alors que les groupes de cohomologie H q (X,L) sont isomorphes aux groupes de cohomologie du complexe C hol (𝔘,L) des cochaînes (f a 0 ...a q ) a 0 ,...,a q A qui dépendent d’une façon holomorphe des a j , à condition que S={(a,x)A×X:xU a }A×X soit un ouvert de Stein. Ce résultat est démontré dans le cadre des variétés de Banach. On finit en donnant une application à l’étude des opérations holomorphes d’un groupe réductif complexe sur L.

Consider a holomorphic vector bundle LX and an open cover 𝔘={U a :aA} of X, parametrized by a complex manifold A. We prove that the sheaf cohomology groups H q (X,L) can be computed from the complex C hol (𝔘,L) of cochains (f a 0 ...a q ) a 0 ,...,a q A that depend holomorphically on the a j , provided S={(a,x)A×X:xU a } is a Stein open subset of A×X. The result is proved in the setting of Banach manifolds, and is applied to study representations on cohomology groups induced by a holomorphic action of a complex reductive Lie group on L.

@article{AFST_2015_6_24_1_21_0,
     author = {L\'aszl\'o Lempert},
     title = {Representing {Analytic} {Cohomology} {Groups} of {Complex} {Manifolds}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {21--38},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 24},
     number = {1},
     year = {2015},
     doi = {10.5802/afst.1440},
     zbl = {1318.32015},
     mrnumber = {3325949},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1440/}
}
TY  - JOUR
AU  - László Lempert
TI  - Representing Analytic Cohomology Groups of Complex Manifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
SP  - 21
EP  - 38
VL  - 24
IS  - 1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1440/
DO  - 10.5802/afst.1440
LA  - en
ID  - AFST_2015_6_24_1_21_0
ER  - 
%0 Journal Article
%A László Lempert
%T Representing Analytic Cohomology Groups of Complex Manifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 21-38
%V 24
%N 1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1440/
%R 10.5802/afst.1440
%G en
%F AFST_2015_6_24_1_21_0
László Lempert. Representing Analytic Cohomology Groups of Complex Manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 1, pp. 21-38. doi : 10.5802/afst.1440. https://afst.centre-mersenne.org/articles/10.5802/afst.1440/

[1] Bailey (T.N.), Eastwood (M.G.), Gindikin (S.G.).— Nonclassical descriptions of analytic cohomology. Proc. 22nd Winter School “Geometry and Physics” (Srní, 2002) Rend. Circ. Mat. Palermo 2 71, p. 93-98 (2003). | MR | Zbl

[2] Bailey (T.N.), Eastwood (M.G.), Gindikin (S.G.).— Smoothly parametrized Čech cohomology of complex manifolds, J. Geom. Anal. 15, p. 9-23 (2005). | MR | Zbl

[3] Baston (R.J.), Eastwood (M.G.).— The Penrose transform. Its interactions with representation theory. Oxford Mathematical Monography, Oxford University Press, New York, 1989. | MR | Zbl

[4] Bredon (G.E.).— Sheaf theory, 2nd edition, Springer, New York, 1997. | MR | Zbl

[5] Bröcker (T.), tom Dieck (T.).— Representations of compact Lie groups, Springer, New York, 1985. | MR | Zbl

[6] Cartan (H.).— Séminaire École Norm. Sup. 4, Fonctions analytiques de plusiers variables complexes, Paris p. 1951-52.

[7] Coeuré (G.).— Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l’étude des fonctions analytiques, Ann. Inst. Fourier (Grenoble) 20, p. 361-432 (1970). | Numdam | MR | Zbl

[8] Dineen (S.).— Complex analysis on infinite–dimensional spaces, Springer, London, 1999. | MR | Zbl

[9] Eastwood (M.G.), Gindikin (S.G.), Wong (H.).— Holomorphic realization of ¯–cohomology and constructions of representations, J. Geom. Phys. 17, p. 231-244 (1995). | MR | Zbl

[10] Gindikin (S.G.).— Holomorphic language for ¯–cohomology and representations of real semisimple Lie groups, Contemp. Math. 154, Amer. Math. Soc., Providence, RI, 1993. | MR | Zbl

[11] Lempert (L.).— Analytic cohomology groups of infinite dimensional complex manifolds, arxiv:1312.7327. | MR

[12] Lempert (L.), Patyi (I.).— Analytic sheaves in Banach spaces, Ann. Scient. Éc. Norm. Sup. 4 e série, t. 40, p. 453-486 (2007). | Numdam | MR | Zbl

[13] Lempert (L.), Zhang (N.).— Dolbeault cohomology of a loop space, Acta Math. 193, p. 241-268 (2004). | MR | Zbl

[14] Mujica (J.).— Complex analysis in Banach spaces, North–Holland, Amsterdam, 1986. | MR | Zbl

[15] Nachbin (L.).— Topology on spaces of holomorphic mappings, Springer, New York, 1969. | MR | Zbl

[16] Patyi (I.).— Plurisubharmonic domination in Banach spaces, Adv. Math. 227, p. 245-252 (2011). | MR | Zbl

[17] Serre (J.-P.).— Faisceaux algébriques cohérents, Ann. of Math (2) 61, p. 197-278 (1955). | MR | Zbl

Cité par Sources :