logo AFST
Solutions algébriques partielles des équations isomonodromiques sur les courbes de genre 2
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 1, pp. 39-54.

We study the possiblility to construct partial algebraic solutions of the isomonodromy equations for holomorphic connexions of rank 2 on curves of genus 2 by adapting the Doran-Andreev-Kitaev method of Hurwitz families. We classify all cases where the connexion is Zariski dense monodromy.

On étudie la possibilité de construire des solutions algébriques partielles des équations d’isomonodromie pour les connexions holomorphes de rang 2 sur les courbes de genre 2 en adaptant la méthode de Doran-Andreev-Kitaev par les familles de Hurwitz. Nous classifions tous les cas où la connexion est à monodromie Zariski dense.

@article{AFST_2015_6_24_1_39_0,
     author = {Karamoko Diarra},
     title = {Solutions alg\'ebriques partielles des \'equations isomonodromiques sur les courbes de genre $2$},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {39--54},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {6e s{\'e}rie, 24},
     number = {1},
     year = {2015},
     doi = {10.5802/afst.1441},
     mrnumber = {3325950},
     language = {fr},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1441/}
}
TY  - JOUR
AU  - Karamoko Diarra
TI  - Solutions algébriques partielles des équations isomonodromiques sur les courbes de genre $2$
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
SP  - 39
EP  - 54
VL  - 24
IS  - 1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1441/
DO  - 10.5802/afst.1441
LA  - fr
ID  - AFST_2015_6_24_1_39_0
ER  - 
%0 Journal Article
%A Karamoko Diarra
%T Solutions algébriques partielles des équations isomonodromiques sur les courbes de genre $2$
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 39-54
%V 24
%N 1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1441/
%R 10.5802/afst.1441
%G fr
%F AFST_2015_6_24_1_39_0
Karamoko Diarra. Solutions algébriques partielles des équations isomonodromiques sur les courbes de genre $2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 1, pp. 39-54. doi : 10.5802/afst.1441. https://afst.centre-mersenne.org/articles/10.5802/afst.1441/

[1] Abu Osman (M. T.) et Rosenberger (G.).— Embedding property of surface groups. Bull. Malaysian Math. Soc. 3, p. 21-27 (1980). | MR | Zbl

[2] Andreev (F. V.) et Kitaev (A. V.).— Transformations RS 4 2 (3) of the ranks 4 and algebraic solutions of the sixth Painlevé equation. Comm. Math. Phys. 228, p. 151-176 (2002). | MR | Zbl

[3] Boalch (P.).— From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. 90, p. 167-208 (2005). | MR | Zbl

[4] Boalch (P.).— From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. Londo, The fifty-two icosahedral solutions to Painlevé VI. J. Reine Angew. Math. 596, p. 183-214 (2006). | MR | Zbl

[5] Boalch (P.).— Six results on Painlevé VI. Théories asymptotiques et équations de Painlevé, 1-20, Sémin. Congr., 14, Soc. Math. France, Paris, 2006. | MR | Zbl

[6] Boalch (P.).— Higher genus icosahedral Painlevé curves. Funkcial. Ekvac. 50, no. 1, p. 19-32 (2007). | MR | Zbl

[7] Boalch (P.).— Some explicit solutions to the Riemann-Hilbert problem. Differential equations and quantum groups, 85-112, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007. | MR

[8] Boalch (P.).— Towards a non-linear Schwarz’s list. The many facets of geometry, 210-236, Oxford Univ. Press, Oxford, 2010. | MR | Zbl

[9] Chiarellotto (B.).— On Lamé Operators which are Pullbacks of Hypergeometric Ones. Trans. Amer. Math. Soc. 347, p. 2735-2780 (1995). | MR | Zbl

[10] Corlette (K.) et Simpson (C.).— On the classification of rank-two representations of quasiprojective fundamental groups. Compos. Math. 144, p. 1271-1331 (2008). | MR | Zbl

[11] Cousin (G.).— Un exemple de feuilletage modulaire déduit d’une solution algébrique de l’équation de Painlevé VI. arXiv :1201.2755

[12] Diarra (K.).— Construction de déformations isomonodromiques par revêtements, thèse de doctorat, Université de Rennes 1 (2011). http ://tel.archives-ouvertes.fr/

[13] Diarra (K.).— Construction et classification de certaines solutions algébriques des systèmes de Garnier. Bull. Braz. Math. Soc., New Series 44, p. 1-26 (2013). | MR | Zbl

[14] Doran (C. F.).— Algebraic and Geometric Isomonodromic Deformations. J. Differential Geometry 59, p. 33-85 (2001). | MR | Zbl

[15] Dubrovin (B.) et Mazzocco (M.).— Monodromy of certain Painlevé-VI transcendents and reflection groups. Invent. Math. 141, p. 55-147 (2000). | MR | Zbl

[16] Heu (V.) et Loray (F.).— Flat rank 2 vector bundles on genus 2 curves. http ://hal.archives-ouvertes.fr/hal-00927061/fr/

[17] Hitchin (N.).— Poncelet polygons and the Painlevé equations. Geometry and analysis (Bombay, 1992), 151-185, Tata Inst. Fund. Res., Bombay, 1995. | MR | Zbl

[18] Hitchin (N.).— A lecture on the octahedron. Bull. London Math. Soc. 35, p. 577-600 (2003). | MR | Zbl

[19] Hulpke (A.), Kuusalo (T.), Näätänen (M. ) et Rosenberger (G.).— On orbifold coverings by genus 2 surfaces. Sci. Ser. A Math. Sci. (N.S.) 11, p. 45-55 (2005). | MR | Zbl

[20] Iwasaki (K.), Kimura (H.), Shimomura (S.) et Yoshida (M.).— From Gauss to Painlevé. A modern theory of special functions. Aspects of Mathematics, E16. Friedr. Vieweg and Sohn, Braunschweig, 1991. | MR | Zbl

[21] Kitaev (A. V.).— Special functions of isomonodromy type, rational transformations of the spectral parameter, and algebraic solutions of the sixth Painlevé equation. Algebra i Analiz 14, p. 121-139 (2002). | MR | Zbl

[22] Kitaev (A. V.).— Grothendieck’s dessins d’enfants, their deformations, and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations. Algebra i Analiz 17, p. 224-275 (2005). | MR | Zbl

[23] Klein (F.).— Vorlesungen über das Ikosaedar, B. G. Teubner, Leipzig (1884). | JFM

[24] Krichever (I.).— Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations. Mosc. Math. J. 2, p. 717-752 (2002). | MR | Zbl

[25] Lisovyy (O.) et Tykhyy (Y.).— Algebraic solutions of the sixth Painlevé equation. arXiv :0809.4873 [math.CA] | MR

[26] Mazzocco (M.).— Rational solutions of the Painlevé VI equation. Kowalevski Workshop on Mathematical Methods of Regular Dynamics (Leeds, 2000). J. Phys. A 34, p. 2281-2294 (2001). | MR | Zbl

[27] Mazzocco (M.).— Picard and Chazy solutions to the Painlevé VI equation. Math. Ann. 321, p. 157-195 (2001). | MR | Zbl

[28] Mednykh (A.).— Counting conjugacy classes of subgroups in a finitely generated group. J. Algebra 320, p. 2209-2217 (2008). | MR | Zbl

[29] Pascali (M. A.) et Petronio (C.).— Branched covers of the sphere and the prime-degree conjecture. Ann. Mat. Pura Appl. 191, p. 563-594 (2012). | MR | Zbl

[30] Pervova (E.) et Petronio (C.).— On the existence of branched coverings between surfaces with prescribed branch data. I. Algebr. Geom. Topol. 6, p. 1957-1985 (2006). | MR | Zbl

[31] Pervova (E.) et Petronio (C.).— On the existence of branched coverings between surfaces with prescribed branch data. II. J. Knot Theory Ramifications 17, p. 787-816 (2008). | MR | Zbl

[32] Simpson (C.).— Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math. 80, p. 5-79 (1994). | EuDML | Numdam | MR | Zbl

Cited by Sources: