@article{AFST_2015_6_24_5_1017_0, author = {Luisa Paoluzzi}, title = {Introduction}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1017--1023}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 24}, number = {5}, year = {2015}, doi = {10.5802/afst.1473}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1473/} }
TY - JOUR AU - Luisa Paoluzzi TI - Introduction JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 1017 EP - 1023 VL - 24 IS - 5 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1473/ DO - 10.5802/afst.1473 LA - en ID - AFST_2015_6_24_5_1017_0 ER -
%0 Journal Article %A Luisa Paoluzzi %T Introduction %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 1017-1023 %V 24 %N 5 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1473/ %R 10.5802/afst.1473 %G en %F AFST_2015_6_24_5_1017_0
Luisa Paoluzzi. Introduction. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Numéro Spécial : Actes du Colloque « Topologie et Géométrie de petite dimension », à l’occasion des 60 ans de Michel Boileau, du 24 au 28 juin 2013 à Toulouse, Volume 24 (2015) no. 5, pp. 1017-1023. doi : 10.5802/afst.1473. https://afst.centre-mersenne.org/articles/10.5802/afst.1473/
[1] Agol (I.).— Tameness of hyperbolic 3-manifolds, arXiv:math.GT/0405568.
[2] Agol (I.).— The virtual Haken Conjecture, Doc. Math. 18 p. 1045-1087 (2013). With an appendix by I. Agol D. Groves, and J. Manning. | MR | Zbl
[3] Bessières (L.), Besson (G.), Boileau (M.), Maillot (S.), and Porti (J.).— Geometrization of 3-Manifolds, EMS Tracts in Mathematics 13 (2010). | Zbl
[4] Boileau (M.), Boyer (S.), Cebanu (R.) and Walsh.— Knot commensurability and the Berge conjecture, Geom. Topol. 16, p. 625-664 (2012). | MR | Zbl
[5] Boileau (M.), Leeb (B.), and Porti (J.), Geometrization of 3-dimensional orbifolds, Ann. Math. 162, p. 195-250 (2005). | MR | Zbl
[6] Boileau (M.) and Zieschang (H.).— Heegaard genus of closed orientable Seifert 3-manifolds, Invent. Math. 76, no. 3, p. 455-468 (1984). | EuDML | MR | Zbl
[7] Boyer (S.), C. Gordon (C. McA.) and Watson (L.).— On L-spaces and left-orderable fundamental groups, Math. Ann. 356, p. 1213-1245 (2013). | MR | Zbl
[8] Boyer (S.) and Zhang (Z.).— Finite Dehn surgery on knots, J. Amer. Math. Soc. 9, p. 1005-1050 (1996). | MR | Zbl
[9] Calegari (D.) and Gabai (D.).— Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19, p. 385-446 (2006). | MR | Zbl
[10] Culler (M.), Gordon (C. McA.), Luecke (J.), and Shalen (P.).— Dehn surgery on knots, Ann. Math. 125, p. 237-300 (1987). | MR | Zbl
[11] Kahn (J.) and Markovic (V.).— Counting essential surfaces in a closed hyperbolic three-manifold, Geom. Topol. 16, p. 601-624 (2012). | MR | Zbl
[12] Kashaev (R.).— The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39, p. 269-275 (1997). | MR | Zbl
[13] Li (T.).— Rank and genus of 3-manifolds, J. Amer. Math. Soc. 26, p. 777-829 (2013). | MR | Zbl
[14] Perelman (G.).— The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159. | Zbl
[15] Perelman (G.).— Ricci flow with surgery on three-manifolds, arXiv:math.DG/0303109. | Zbl
[16] Perelman (G.).— Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math.DG/0307245. | Zbl
[17] Reid (A.) and Walsh (G.).— Commensurability classes of two-bridge knot complements, Algeb. Geom. Topol. 8, p. 1031-1057 (2008). | MR | Zbl
[18] Wise (D.).— The structure of groups with a quasi-convex hierarchy, Electronic Res. Ann. Math. Sci. 16, p. 44-55 (2009). | MR | Zbl
[19] Wise (D.).— The structure of groups with a quasi-convex hierarchy, preprint 2011.
[20] Wise (D.).— From riches to RAAGs: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics (2012). | MR | Zbl
Cited by Sources: