@article{AFST_2015_6_24_5_1017_0, author = {Luisa Paoluzzi}, title = {Introduction}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1017--1023}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 24}, number = {5}, year = {2015}, doi = {10.5802/afst.1473}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1473/} }
TY - JOUR TI - Introduction JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 DA - 2015/// SP - 1017 EP - 1023 VL - Ser. 6, 24 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1473/ UR - https://doi.org/10.5802/afst.1473 DO - 10.5802/afst.1473 LA - en ID - AFST_2015_6_24_5_1017_0 ER -
Luisa Paoluzzi. Introduction. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 5, pp. 1017-1023. doi : 10.5802/afst.1473. https://afst.centre-mersenne.org/articles/10.5802/afst.1473/
[1] Agol (I.).— Tameness of hyperbolic 3-manifolds, arXiv:math.GT/0405568.
[2] Agol (I.).— The virtual Haken Conjecture, Doc. Math. 18 p. 1045-1087 (2013). With an appendix by I. Agol D. Groves, and J. Manning. | MR: 3104553 | Zbl: 1286.57019
[3] Bessières (L.), Besson (G.), Boileau (M.), Maillot (S.), and Porti (J.).— Geometrization of 3-Manifolds, EMS Tracts in Mathematics 13 (2010). | Zbl: 1244.57003
[4] Boileau (M.), Boyer (S.), Cebanu (R.) and Walsh.— Knot commensurability and the Berge conjecture, Geom. Topol. 16, p. 625-664 (2012). | MR: 2928979 | Zbl: 1258.57001
[5] Boileau (M.), Leeb (B.), and Porti (J.), Geometrization of 3-dimensional orbifolds, Ann. Math. 162, p. 195-250 (2005). | MR: 2178962 | Zbl: 1087.57009
[6] Boileau (M.) and Zieschang (H.).— Heegaard genus of closed orientable Seifert 3-manifolds, Invent. Math. 76, no. 3, p. 455-468 (1984). | EuDML: 143132 | MR: 746538 | Zbl: 0538.57004
[7] Boyer (S.), C. Gordon (C. McA.) and Watson (L.).— On L-spaces and left-orderable fundamental groups, Math. Ann. 356, p. 1213-1245 (2013). | MR: 3072799 | Zbl: 1279.57008
[8] Boyer (S.) and Zhang (Z.).— Finite Dehn surgery on knots, J. Amer. Math. Soc. 9, p. 1005-1050 (1996). | MR: 1333293 | Zbl: 0936.57010
[9] Calegari (D.) and Gabai (D.).— Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19, p. 385-446 (2006). | MR: 2188131 | Zbl: 1090.57010
[10] Culler (M.), Gordon (C. McA.), Luecke (J.), and Shalen (P.).— Dehn surgery on knots, Ann. Math. 125, p. 237-300 (1987). | MR: 881270 | Zbl: 0633.57006
[11] Kahn (J.) and Markovic (V.).— Counting essential surfaces in a closed hyperbolic three-manifold, Geom. Topol. 16, p. 601-624 (2012). | MR: 2916295 | Zbl: 1283.57021
[12] Kashaev (R.).— The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39, p. 269-275 (1997). | MR: 1434238 | Zbl: 0876.57007
[13] Li (T.).— Rank and genus of 3-manifolds, J. Amer. Math. Soc. 26, p. 777-829 (2013). | MR: 3037787 | Zbl: 1277.57004
[14] Perelman (G.).— The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159. | Zbl: 1130.53001
[15] Perelman (G.).— Ricci flow with surgery on three-manifolds, arXiv:math.DG/0303109. | Zbl: 1130.53002
[16] Perelman (G.).— Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math.DG/0307245. | Zbl: 1130.53003
[17] Reid (A.) and Walsh (G.).— Commensurability classes of two-bridge knot complements, Algeb. Geom. Topol. 8, p. 1031-1057 (2008). | MR: 2443107 | Zbl: 1154.57001
[18] Wise (D.).— The structure of groups with a quasi-convex hierarchy, Electronic Res. Ann. Math. Sci. 16, p. 44-55 (2009). | MR: 2558631 | Zbl: 1183.20043
[19] Wise (D.).— The structure of groups with a quasi-convex hierarchy, preprint 2011.
[20] Wise (D.).— From riches to RAAGs: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics (2012). | MR: 2986461 | Zbl: 1278.20055
Cited by Sources: