logo AFST
A rank formula for acylindrical splittings
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 5, pp. 1057-1078.

Une formule de rang pour les scindements acylindriques des groupes est demontrée. On en déduit que le genre de Heegaard d’une varieté graphée fermée est borné par une fonction linéaire en le rang du groupe fondamental.

We prove a rank formula for arbitrary acylindrical graphs of groups and deduce that the Heegaard genus of a closed graph manifold can be bounded by a linear function in the rank of its fundamental group.

Publié le :
DOI : https://doi.org/10.5802/afst.1475
@article{AFST_2015_6_24_5_1057_0,
     author = {Richard Weidmann},
     title = {A rank formula for acylindrical splittings},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1057--1078},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 24},
     number = {5},
     year = {2015},
     doi = {10.5802/afst.1475},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1475/}
}
TY  - JOUR
AU  - Richard Weidmann
TI  - A rank formula for acylindrical splittings
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
DA  - 2015///
SP  - 1057
EP  - 1078
VL  - Ser. 6, 24
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1475/
UR  - https://doi.org/10.5802/afst.1475
DO  - 10.5802/afst.1475
LA  - en
ID  - AFST_2015_6_24_5_1057_0
ER  - 
%0 Journal Article
%A Richard Weidmann
%T A rank formula for acylindrical splittings
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 1057-1078
%V Ser. 6, 24
%N 5
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1475
%R 10.5802/afst.1475
%G en
%F AFST_2015_6_24_5_1057_0
Richard Weidmann. A rank formula for acylindrical splittings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 5, pp. 1057-1078. doi : 10.5802/afst.1475. https://afst.centre-mersenne.org/articles/10.5802/afst.1475/

[1] Bass (H.).— Covering theory for graphs of groups, Journal of Pure and Applied Algebra 89, p. 3-47 (1993). | MR 1239551 | Zbl 0805.57001

[2] Bestvina (M.) and Feighn (M.).— Bounding the complexity of simplicial group actions of trees, Invent. Math. 103, p. 449-469 (1991). | MR 1091614 | Zbl 0724.20019

[3] Boileau (M.) and Weidmann (R.).— The structure of 3-manifolds with two-generated fundamental group, Topology 44, no. 2, p. 283-320 (2005). | MR 2114709 | Zbl 1082.57014

[4] Boileau (M.) and Zieschang (H.).— Heegaard genus of closed orientable Seifert 3-manifolds, Invent. Math. 76, p. 455-468 (1984). | MR 746538 | Zbl 0538.57004

[5] Dunwoody (M.) and Sageev (M.).— JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135, p. 25-44 (1999). | MR 1664694 | Zbl 0939.20047

[6] Fujiwara (K.) and Papasoglu (P.).— JSJ-decomposition of finitely presented groups and complexes of groups, GAFA 16, p. 70-125 (2006). | MR 2221253 | Zbl 1097.20037

[7] Grushko (I.).— On the bases of a free product of groups Mat. Sbornik 8, p. 169-182 (1940).

[8] Jaco (W.) and Shalen (P.).— Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220. | MR 539411 | Zbl 0415.57005

[9] Johannson (K.).— Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics 761, Springer, Berlin (1979). | Zbl 0412.57007

[10] Kapovich (I.), Miasnikov (A.) and Weidmann (R.).— Foldings, graphs of groups and the membership problem, Internat. J. Algebra Comput. 15, no. 1, p. 95-128 (2005). | Zbl 1089.20018

[11] Kaufmann (R.) and Zieschang (H.).— On the rank of NEC groups In Discrete Groups and Geometry, LMS Lecture Note Series 173, p. 137-147. Cambridge University Press (1992). | Zbl 0791.20033

[12] Kobayashi (T.).— Structures of full Haken manifolds Osaka J. Math. 24, p. 173-215 (1987). | MR 881754 | Zbl 0665.57010

[13] Li (T.).— Rank and genus of 3-manifolds, J. Amer. Math. Soc. 26, no. 3, p. 777-829 (2013). | MR 3037787 | Zbl 1277.57004

[14] Penzavalle (S.).— Heegaard splittings of Seifert manifolds without an orientable base space, http://arxiv.org/abs/math/0611858.

[15] Rips (E.), Sela (Z.).— Cyclic splittings of finitely presented groups and the Canonical JSJ-decomposition, Ann. Maths. 146, p. 53-109 (1997). | MR 1469317 | Zbl 0910.57002

[16] Rosenberger (G.).— Zum Rang- und Isomorphieproblem für freie Produkte mit Amalgam Habilitationsschrift (1974).

[17] Schultens (J.).— Heegaard splittings of Seifert fibered spaces with boundary, Trans. Amer. Math. Soc. 347, no. 7, p. 2533-2552 (1995). | MR 1297537 | Zbl 0851.57017

[18] Schultens (J.).— Heegaard splittings of graph manifolds, Geom. Topol. 8, p. 831-876 (2004). | MR 2087071 | Zbl 1055.57023

[19] Schultens (J.) and Weidmann (R.).— On the geometric and the algebraic rank of graph manifolds, Pacific J. Math. 231, no. 2, p. 481-510 (2007). | MR 2346507 | Zbl 1171.57020

[20] Sela (Z.).— Acylindrical accessibility for groups Invent. math. 129, p. 527-565 (1997). | MR 1465334 | Zbl 0887.20017

[21] Stallings (J. R.).— Topology of Finite Graphs Invent. Math. 71, p. 551-565 (1983). | MR 695906 | Zbl 0521.20013

[22] Weidmann (R.).— On the rank of amalgamated products and product knot groups Math. Ann. 312, p. 761-771 (1999). | MR 1660235 | Zbl 0926.20019

[23] Weidmann (R.).— The Nielsen method for groups acting on trees Proc. London Math. Soc. (3) 85, no. 1, p. 93-118 (2002). | MR 1901370 | Zbl 1018.20020

[24] Weidmann (R.).— A Grushko theorem for 1-acylindrical splittings, J. Reine Angew. Math. 540, p. 77-86 (2001). | MR 1868598 | Zbl 0987.20010

[25] Weidmann (R.).— A rank formula for amalgamated products with finite amalgam, Geometric methods in group theory, p. 99-106, Contemp. Math. 372 Amer. Math. Soc., Providence, RI (2005). | MR 2139680 | Zbl 1140.20305

[26] Weidmann (R.).— The rank problem for sufficiently large Fuchsian groups, Proc. Lond. Math. Soc. (3) 95, no. 3, p. 609-65 (2007)2. | MR 2368278 | Zbl 1131.20036

[27] Weidmann (R.).— Some 3-manifolds with 2-generated fundamental group, Arch. Math. 81, p. 589-595 (2003). | MR 2029721 | Zbl 1041.57008

Cité par Sources :