logo AFST
Half-integral finite surgeries on knots in S 3
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 5, pp. 1157-1178.

Supposant qu’un nœud hyperbolique dans S 3 admet une chirurgie finie, Boyer et Zhang ont prouvé que la pente de la chirurgie doit être soit un entier, soit un demi-entier, et ils ont conjecturé que le dernier cas ne se produit pas. En utilisant les termes de correction dans l’homologie de Heegaard Floer, nous prouvons que si un noeud hyperbolique dans S 3 admet une chirurgie finie demi-entier, alors il doit avoir la même homologie de Floer des nœuds l’un des huit nœuds non-hyperboliques qui sont connus pour avoir ces chirurgies, et la variété résultante doit être l’une des dix formes de l’espace sphérique. Comme l’homologie de Floer des nœuds porte beaucoup d’informations sur le nœud, cela apporte une forte évidence à la conjecture de Boyer–Zhang.

Supposing that a hyperbolic knot in S 3 admits a finite surgery, Boyer and Zhang proved that the surgery slope must be either integral or half-integral, and they conjectured that the latter case does not happen. Using the correction terms in Heegaard Floer homology, we prove that if a hyperbolic knot in S 3 admits a half-integral finite surgery, then the knot must have the same knot Floer homology as one of the eight non-hyperbolic knots which are known to admit such surgeries, and the resulting manifold must be one of ten spherical space forms. As knot Floer homology carries a lot of information about the knot, this gives a strong evidence to Boyer–Zhang’s conjecture.

Publié le :
DOI : https://doi.org/10.5802/afst.1479
@article{AFST_2015_6_24_5_1157_0,
     author = {Eileen Li and Yi Ni},
     title = {Half-integral finite surgeries on knots in $S^3$},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1157--1178},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 24},
     number = {5},
     year = {2015},
     doi = {10.5802/afst.1479},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1479/}
}
TY  - JOUR
AU  - Eileen Li
AU  - Yi Ni
TI  - Half-integral finite surgeries on knots in $S^3$
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
DA  - 2015///
SP  - 1157
EP  - 1178
VL  - Ser. 6, 24
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1479/
UR  - https://doi.org/10.5802/afst.1479
DO  - 10.5802/afst.1479
LA  - en
ID  - AFST_2015_6_24_5_1157_0
ER  - 
%0 Journal Article
%A Eileen Li
%A Yi Ni
%T Half-integral finite surgeries on knots in $S^3$
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 1157-1178
%V Ser. 6, 24
%N 5
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1479
%R 10.5802/afst.1479
%G en
%F AFST_2015_6_24_5_1157_0
Eileen Li; Yi Ni. Half-integral finite surgeries on knots in $S^3$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 5, pp. 1157-1178. doi : 10.5802/afst.1479. https://afst.centre-mersenne.org/articles/10.5802/afst.1479/

[1] Bleiler (S.), Hodgson (C.).— Spherical space forms and Dehn filling, Topology 35, no. 3, p. 809-833 (1996). | MR 1396779 | Zbl 0863.57009

[2] Boyer (S.), Zhang (X.).— Finite Dehn surgery on knots, J. Amer. Math. Soc. 9, no. 4, p. 1005-1050 (1996). | MR 1333293 | Zbl 0936.57010

[3] Culler (M.), Gordon (C.), Luecke (J.), Shalen (P.).— Dehn surgery on knots, Ann. of Math. (2) 125, no. 2, p. 237-300 (1987). | MR 881270 | Zbl 0633.57006

[4] Doig (M.).— Finite knot surgeries and Heegaard Floer homology, Algebr. Geom. Topol. 15, no. 2, p. 667-690 (2015). | MR 3342672

[5] Ghiggini (P.).— Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130, no. 5, p. 1151-1169 (2008). | MR 2450204 | Zbl 1149.57019

[6] Greene (J.).— The lens space realization problem, Ann. of Math. (2) 177, no. 2, p. 449-511 (2013). | MR 3010805 | Zbl 1276.57009

[7] Gu (L.).— Integral finite surgeries on knots in S 3 , preprint (2014), available at arXiv:1401.6708. | MR 3251146

[8] Kronheimer (P.), Mrowka (T.), Ozsváth (P.), Szabó (Z.).— Monopoles and lens space surgeries, Ann. of Math. (2), 165, no. 2, p. 457-546 (2007). | MR 2299739 | Zbl 1204.57038

[9] Li (E.), Ni (Y.).— Half-integral finite surgeries on knots in S 3 , Caltech SURF project paper, available at

[10] Ni (Y.).— Knot Floer homology detects fibred knots, Invent. Math. 170, no. 3, p. 577-608 (2007). | MR 2357503 | Zbl 1138.57031

[11] Ni (Y.).— a Mathematica notebook file for checking whether a half-integral slope could be a finite slope, available at

[12] Ni (Y.), Wu (Z.).— Cosmetic surgeries on knots in S 3 , Reine Angew. Math. 706, p. 1-17 (2015). | MR 3393360

[13] Ozsváth (P.), Z. Szabó (Z.).— Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2), 159, no. 3, p. 1027-1158 (2004). | MR 2113019 | Zbl 1073.57009

[14] Ozsváth (P.), Z. Szabó (Z.).— Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173, no. 2, p. 179-261 (2003). | MR 1957829 | Zbl 1025.57016

[15] Ozsváth (P.), Z. Szabó (Z.).— Holomorphic disks and knot invariants, Adv. Math. 186, no. 1, p. 58-116 (2004). | MR 2065507 | Zbl 1062.57019

[16] Ozsváth (P.), Z. Szabó (Z.).— On knot Floer homology and lens space surgeries, Topology 44, no. 6, p. 1281-1300 (2005). | MR 2168576 | Zbl 1077.57012

[17] Ozsváth (P.), Z. Szabó (Z.).— Holomorphic disks and genus bounds, Geom. Topol. 8, p. 311-334 (2004). | MR 2023281 | Zbl 1056.57020

[18] Ozsváth (P.), Z. Szabó (Z.).— Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), p. 1-68. | MR 2764036 | Zbl 1226.57044

[19] Perelman G..— The entropy formula for the Ricci flow and its geometric applications, available at arXiv:math/0211159. | Zbl 1130.53001

[20] Perelman (G.).— Ricci flow with surgery on three-manifolds, available at arXiv:math/0303109. | Zbl 1130.53002

[21] Perelman (G.).— Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, available at arXiv:math/0307245. | Zbl 1130.53003

[22] Rasmussen (J.).— Floer homology and knot complements, PhD Thesis, Harvard University (2003), available at arXiv:math.GT/0306378. | MR 2704683

[23] Thurston (W.).— The geometry and topology of 3-manifolds, Princeton Lecture Notes (1977).

Cité par Sources :