Lengthening deformations of singular hyperbolic tori
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 5, pp. 1239-1260.

Let S be a torus with a hyperbolic metric admitting one puncture or cone singularity. We describe which infinitesimal deformations of S lengthen (or shrink) all closed geodesics. We also study how the answer degenerates when S becomes Euclidean, i.e. very small.

Soit S un tore muni d’une métrique hyperbolique admettant un trou ou une singularité conique. Nous décrivons quelles déformations infinitésimales de S allongent (ou raccourcissent) toutes les géodésiques fermées. Nous étudions aussi comment la réponse à cette question dégénère lorsque S devient euclidienne, c’est-à-dire très petite.

DOI: 10.5802/afst.1483

François Guéritaud 1, 2

1 CNRS and Université Lille 1, Laboratoire Paul Painlevé, 59655 Villeneuve d’Ascq Cedex, France
2 Wolfgang-Pauli Institute, University of Vienna, CNRS-UMI 2842, Austria
@article{AFST_2015_6_24_5_1239_0,
     author = {Fran\c{c}ois Gu\'eritaud},
     title = {Lengthening deformations of singular hyperbolic tori},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1239--1260},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 24},
     number = {5},
     year = {2015},
     doi = {10.5802/afst.1483},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1483/}
}
TY  - JOUR
AU  - François Guéritaud
TI  - Lengthening deformations of singular hyperbolic tori
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
SP  - 1239
EP  - 1260
VL  - 24
IS  - 5
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1483/
DO  - 10.5802/afst.1483
LA  - en
ID  - AFST_2015_6_24_5_1239_0
ER  - 
%0 Journal Article
%A François Guéritaud
%T Lengthening deformations of singular hyperbolic tori
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 1239-1260
%V 24
%N 5
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1483/
%R 10.5802/afst.1483
%G en
%F AFST_2015_6_24_5_1239_0
François Guéritaud. Lengthening deformations of singular hyperbolic tori. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 5, pp. 1239-1260. doi : 10.5802/afst.1483. https://afst.centre-mersenne.org/articles/10.5802/afst.1483/

[1] Bonahon (F.).— Low-dimensional Geometry: from Euclidean Surfaces to Hyperbolic Knots, Student Math. Library (Vol. 49), AMS 2009, 384pp. | MR | Zbl

[2] Bowditch (B. H.).— Markoff triples and quasifuchsian groups, Proc. London Math. Soc. 77, p. 697-736 (1998). | MR | Zbl

[3] Conway (J.H.), Guy (R. K.).— The Book of Numbers, Springer Verlag, New York (1994). | Zbl

[4] Charette (V.).— Non-proper affine actions of the holonomy group of a punctured torus, Forum Math. 18, no. 1, p. 121-135 (2006). | MR | Zbl

[5] Charette (V.), Drumm (T. A.), Goldman (W. M.).— Affine deformations of a three-holed sphere, Geometry & Topology 14, p. 1355-1382 (2010). | MR | Zbl

[6] Charette (V.), Drumm (T. A.), Goldman (W. M.).— Finite-sided deformation spaces of complete affine 3-manifolds, J. of Topology 7 (1), p. 225-246 (2014). | MR | Zbl

[7] Charette (V.), Drumm (T. A.), Goldman (W. M.).— Proper affine deformations of two-generator Fuchsian groups, arXiv:1501.04535. | MR

[8] Danciger (J.), Guéritaud (F.), Kassel (F.).— Geometry and topology of complete Lorentz spacetimes of constant curvature, Annales de l’ÉNS, 4e série, tome 49, fascicule 1, p. 1-57 (2016).

[9] Danciger (J.), Guéritaud (F.), Kassel (F.).— Margulis spacetimes via the arc complex, Inventions Mathematicae.

[10] Drumm (T. A.).— Linear holonomy of Margulis space-times, J. Diff. Geom. 38, no. 3, p. 679-690 (1993). | MR | Zbl

[11] Ford (L. R.).— The fundamental region for a Fuchsian group, Bull. AMS 31, p. 531-539 (1935). | MR

[12] Goldman (W. M.), Labourie (F.), Margulis (G.).— Proper Affine Actions and Geodesic Flows of hyperbolic surfaces, Annals of Math. 170 no. 3, p. 1051-1083 (2009). | MR | Zbl

[13] Goldman (W. M.), Labourie (F.), Margulis (G. A.), Minsky (Y.).— Complete flat Lorentz 3-manifolds and laminations on hyperbolic surfaces, in preparation.

[14] Goldman (W. M.).— The modular group action on real SL(2)-characters of a one-holed torus, Geometry & Topology 7, p. 443-486 (2003). | MR | Zbl

[15] Hardy (G. H.), Wright (E. M.).— An Introduction to the Theory of Numbers, 5th ed. Clarendon Press, Oxford (1979). | MR | Zbl

[16] Margulis (G.).— Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk. SSSR 272, p. 937-940 (1983). | MR

[17] Thurston (W. P.).— Minimal stretch maps between hyperbolic surfaces, 1986 preprint, arXiv:math/9801039v1.

Cited by Sources: