Let be a torus with a hyperbolic metric admitting one puncture or cone singularity. We describe which infinitesimal deformations of lengthen (or shrink) all closed geodesics. We also study how the answer degenerates when becomes Euclidean, i.e. very small.
Soit un tore muni d’une métrique hyperbolique admettant un trou ou une singularité conique. Nous décrivons quelles déformations infinitésimales de allongent (ou raccourcissent) toutes les géodésiques fermées. Nous étudions aussi comment la réponse à cette question dégénère lorsque devient euclidienne, c’est-à-dire très petite.
@article{AFST_2015_6_24_5_1239_0, author = {Fran\c{c}ois Gu\'eritaud}, title = {Lengthening deformations of singular hyperbolic tori}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1239--1260}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 24}, number = {5}, year = {2015}, doi = {10.5802/afst.1483}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1483/} }
TY - JOUR AU - François Guéritaud TI - Lengthening deformations of singular hyperbolic tori JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 1239 EP - 1260 VL - 24 IS - 5 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1483/ DO - 10.5802/afst.1483 LA - en ID - AFST_2015_6_24_5_1239_0 ER -
%0 Journal Article %A François Guéritaud %T Lengthening deformations of singular hyperbolic tori %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 1239-1260 %V 24 %N 5 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1483/ %R 10.5802/afst.1483 %G en %F AFST_2015_6_24_5_1239_0
François Guéritaud. Lengthening deformations of singular hyperbolic tori. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 5, pp. 1239-1260. doi : 10.5802/afst.1483. https://afst.centre-mersenne.org/articles/10.5802/afst.1483/
[1] Bonahon (F.).— Low-dimensional Geometry: from Euclidean Surfaces to Hyperbolic Knots, Student Math. Library (Vol. 49), AMS 2009, 384pp. | MR | Zbl
[2] Bowditch (B. H.).— Markoff triples and quasifuchsian groups, Proc. London Math. Soc. 77, p. 697-736 (1998). | MR | Zbl
[3] Conway (J.H.), Guy (R. K.).— The Book of Numbers, Springer Verlag, New York (1994). | Zbl
[4] Charette (V.).— Non-proper affine actions of the holonomy group of a punctured torus, Forum Math. 18, no. 1, p. 121-135 (2006). | MR | Zbl
[5] Charette (V.), Drumm (T. A.), Goldman (W. M.).— Affine deformations of a three-holed sphere, Geometry & Topology 14, p. 1355-1382 (2010). | MR | Zbl
[6] Charette (V.), Drumm (T. A.), Goldman (W. M.).— Finite-sided deformation spaces of complete affine 3-manifolds, J. of Topology 7 (1), p. 225-246 (2014). | MR | Zbl
[7] Charette (V.), Drumm (T. A.), Goldman (W. M.).— Proper affine deformations of two-generator Fuchsian groups, arXiv:1501.04535. | MR
[8] Danciger (J.), Guéritaud (F.), Kassel (F.).— Geometry and topology of complete Lorentz spacetimes of constant curvature, Annales de l’ÉNS, 4e série, tome 49, fascicule 1, p. 1-57 (2016).
[9] Danciger (J.), Guéritaud (F.), Kassel (F.).— Margulis spacetimes via the arc complex, Inventions Mathematicae.
[10] Drumm (T. A.).— Linear holonomy of Margulis space-times, J. Diff. Geom. 38, no. 3, p. 679-690 (1993). | MR | Zbl
[11] Ford (L. R.).— The fundamental region for a Fuchsian group, Bull. AMS 31, p. 531-539 (1935). | MR
[12] Goldman (W. M.), Labourie (F.), Margulis (G.).— Proper Affine Actions and Geodesic Flows of hyperbolic surfaces, Annals of Math. 170 no. 3, p. 1051-1083 (2009). | MR | Zbl
[13] Goldman (W. M.), Labourie (F.), Margulis (G. A.), Minsky (Y.).— Complete flat Lorentz -manifolds and laminations on hyperbolic surfaces, in preparation.
[14] Goldman (W. M.).— The modular group action on real SL(2)-characters of a one-holed torus, Geometry & Topology 7, p. 443-486 (2003). | MR | Zbl
[15] Hardy (G. H.), Wright (E. M.).— An Introduction to the Theory of Numbers, 5th ed. Clarendon Press, Oxford (1979). | MR | Zbl
[16] Margulis (G.).— Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk. SSSR 272, p. 937-940 (1983). | MR
[17] Thurston (W. P.).— Minimal stretch maps between hyperbolic surfaces, 1986 preprint, arXiv:math/9801039v1.
Cited by Sources: