Soit
Let
@article{AFST_2015_6_24_5_1239_0, author = {Fran\c{c}ois Gu\'eritaud}, title = {Lengthening deformations of singular hyperbolic tori}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1239--1260}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 24}, number = {5}, year = {2015}, doi = {10.5802/afst.1483}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1483/} }
TY - JOUR AU - François Guéritaud TI - Lengthening deformations of singular hyperbolic tori JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 1239 EP - 1260 VL - 24 IS - 5 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1483/ DO - 10.5802/afst.1483 LA - en ID - AFST_2015_6_24_5_1239_0 ER -
%0 Journal Article %A François Guéritaud %T Lengthening deformations of singular hyperbolic tori %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 1239-1260 %V 24 %N 5 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1483/ %R 10.5802/afst.1483 %G en %F AFST_2015_6_24_5_1239_0
François Guéritaud. Lengthening deformations of singular hyperbolic tori. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial : Actes du Colloque « Topologie et Géométrie de petite dimension », à l’occasion des 60 ans de Michel Boileau, du 24 au 28 juin 2013 à Toulouse, Tome 24 (2015) no. 5, pp. 1239-1260. doi : 10.5802/afst.1483. https://afst.centre-mersenne.org/articles/10.5802/afst.1483/
[1] Bonahon (F.).— Low-dimensional Geometry: from Euclidean Surfaces to Hyperbolic Knots, Student Math. Library (Vol. 49), AMS 2009, 384pp. | MR | Zbl
[2] Bowditch (B. H.).— Markoff triples and quasifuchsian groups, Proc. London Math. Soc. 77, p. 697-736 (1998). | MR | Zbl
[3] Conway (J.H.), Guy (R. K.).— The Book of Numbers, Springer Verlag, New York (1994). | Zbl
[4] Charette (V.).— Non-proper affine actions of the holonomy group of a punctured torus, Forum Math. 18, no. 1, p. 121-135 (2006). | MR | Zbl
[5] Charette (V.), Drumm (T. A.), Goldman (W. M.).— Affine deformations of a three-holed sphere, Geometry & Topology 14, p. 1355-1382 (2010). | MR | Zbl
[6] Charette (V.), Drumm (T. A.), Goldman (W. M.).— Finite-sided deformation spaces of complete affine 3-manifolds, J. of Topology 7 (1), p. 225-246 (2014). | MR | Zbl
[7] Charette (V.), Drumm (T. A.), Goldman (W. M.).— Proper affine deformations of two-generator Fuchsian groups, arXiv:1501.04535. | MR
[8] Danciger (J.), Guéritaud (F.), Kassel (F.).— Geometry and topology of complete Lorentz spacetimes of constant curvature, Annales de l’ÉNS, 4e série, tome 49, fascicule 1, p. 1-57 (2016).
[9] Danciger (J.), Guéritaud (F.), Kassel (F.).— Margulis spacetimes via the arc complex, Inventions Mathematicae.
[10] Drumm (T. A.).— Linear holonomy of Margulis space-times, J. Diff. Geom. 38, no. 3, p. 679-690 (1993). | MR | Zbl
[11] Ford (L. R.).— The fundamental region for a Fuchsian group, Bull. AMS 31, p. 531-539 (1935). | MR
[12] Goldman (W. M.), Labourie (F.), Margulis (G.).— Proper Affine Actions and Geodesic Flows of hyperbolic surfaces, Annals of Math. 170 no. 3, p. 1051-1083 (2009). | MR | Zbl
[13] Goldman (W. M.), Labourie (F.), Margulis (G. A.), Minsky (Y.).— Complete flat Lorentz
[14] Goldman (W. M.).— The modular group action on real SL(2)-characters of a one-holed torus, Geometry & Topology 7, p. 443-486 (2003). | MR | Zbl
[15] Hardy (G. H.), Wright (E. M.).— An Introduction to the Theory of Numbers, 5th ed. Clarendon Press, Oxford (1979). | MR | Zbl
[16] Margulis (G.).— Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk. SSSR 272, p. 937-940 (1983). | MR
[17] Thurston (W. P.).— Minimal stretch maps between hyperbolic surfaces, 1986 preprint, arXiv:math/9801039v1.
- COARSE AND FINE GEOMETRY OF THE THURSTON METRIC, Forum of Mathematics, Sigma, Volume 8 (2020) | DOI:10.1017/fms.2020.3
- Strip maps of small surfaces are convex, Illinois Journal of Mathematics, Volume 60 (2016) no. 1 | DOI:10.1215/ijm/1498032022
- Margulis spacetimes via the arc complex, Inventiones mathematicae, Volume 204 (2016) no. 1, p. 133 | DOI:10.1007/s00222-015-0610-z
Cité par 3 documents. Sources : Crossref