Distribution of zeroes of Rademacher Taylor series
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 4, pp. 759-784.

We find the asymptotics of the counting function of zeroes of random entire functions represented by Rademacher Taylor series. We also give the asymptotics of the weighted counting function, which takes into account the arguments of zeroes. These results answer several questions left open after the pioneering work of Littlewood and Offord of 1948.

The proofs are based on our recent result on the logarithmic integrability of Rademacher Fourier series.

Nous trouvons l’asymptotique de la fonction de comptage de zéros pour les fonctions entières aléatoires représentées par des séries de Taylor du type de Rademacher. Nous donnons aussi l’asymptotique pour la fonction de comptage à poids, qui prend en compte les arguments des zéros. Ces résultats répondent à certaines questions laissées ouvertes après le travail novateur de Littlewood et Offord en 1948.

Les preuves sont basées sur notre résultat récent sur l’intégrabilité logarithmique de séries de Fourier du type de Rademacher.

Published online:
DOI: 10.5802/afst.1510

Fedor Nazarov 1; Alon Nishry 2; Mikhail Sodin 3

1 Department of Mathematical Sciences, Kent State University, Kent OH 44242, USA
2 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
3 School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
@article{AFST_2016_6_25_4_759_0,
     author = {Fedor Nazarov and Alon Nishry and Mikhail Sodin},
     title = {Distribution of zeroes of {Rademacher} {Taylor} series},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {759--784},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 25},
     number = {4},
     year = {2016},
     doi = {10.5802/afst.1510},
     zbl = {1352.30001},
     mrnumber = {3564126},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1510/}
}
TY  - JOUR
AU  - Fedor Nazarov
AU  - Alon Nishry
AU  - Mikhail Sodin
TI  - Distribution of zeroes of Rademacher Taylor series
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2016
SP  - 759
EP  - 784
VL  - 25
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1510/
DO  - 10.5802/afst.1510
LA  - en
ID  - AFST_2016_6_25_4_759_0
ER  - 
%0 Journal Article
%A Fedor Nazarov
%A Alon Nishry
%A Mikhail Sodin
%T Distribution of zeroes of Rademacher Taylor series
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2016
%P 759-784
%V 25
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1510/
%R 10.5802/afst.1510
%G en
%F AFST_2016_6_25_4_759_0
Fedor Nazarov; Alon Nishry; Mikhail Sodin. Distribution of zeroes of Rademacher Taylor series. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 4, pp. 759-784. doi : 10.5802/afst.1510. https://afst.centre-mersenne.org/articles/10.5802/afst.1510/

[1] Borichev (A.), Nishry (A.), Sodin (M.).— Entire functions of exponential type represented by pseudo-random and random Taylor series. J. d’Analyse Math., to appear. | DOI | MR | Zbl

[2] Favorov (S.Yu).— Growth and distribution of the values of holomorphic mappings of a finite-dimensional space into a Banach space. Siberian Math. J. 31, p. 137-146 (1990).

[3] Favorov (S.Yu).— On the growth of holomorphic mappings from a finite-dimensional space into a Banach space. Mat. Fiz. Anal. Geom. 1, p. 240-251 (1994). | MR | Zbl

[4] Hayman (W. K.).— Subhamronic functions, vol. 2. Academic Press (1989). | DOI

[5] Kabluchko (Z.), Zaporozhets (D.).— Asymptotic distribution of complex zeros of random analytic functions, Ann. Probab. 42, p. 1374-1395 (2014). | DOI | MR | Zbl

[6] Littlewood (J. E.), Offord (A. C.).— On the distribution of zeros and a-values of a random integral function (II), Ann. of Math. (2) 49.— (1948), 885-952; errata 50, p. 990-991 (1949). | DOI | MR

[7] Mahola (M. P.), Filevich (V. P.).— The angular distribution of zeros of random analytic functions, Ufa Math. J. 12:4, p. 122-135 (2012).

[8] Mahola (M. P.), Filevich (V. P.).— The angular distribution of the values of analytic and random analytic functions, Mat. Stud. 38:2, p. 147-153 (2012). | Zbl

[9] Nazarov (F.), Nishry (A.), Sodin (M.).— Log-integrability of Rademacher Fourier series, with applications to random analytic functions, Algebra & Analysis 25:3, p. 147-184 (2013). | DOI | MR

[10] Offord (A. C.).— The distribution of the values of an entire function whose coefficients are independent random variables. (I) Proc. London Math. Soc. (3) 14a, p. 199-238 (1965). | DOI | MR | Zbl

[11] Offord (A. C.).— The distribution of zeros of power series whose coefficients are independent random variables. Indian J. Math. 9, p. 175-196 (1967). | MR | Zbl

[12] Offord (A. C.).— The distribution of the values of an entire function whose coefficients are independent random variables. (II). Math. Proc. Cambridge Phil. Soc. 118, p. 527-542 (1995). | DOI | MR | Zbl

[13] Ullrich (D. C.).— An extension of the Kahane-Khinchine inequality in a Banach space. Israel J. Math. 62, p. 56-62 (1988). | DOI | MR | Zbl

[14] Ullrich (D. C.).— Khinchin’s inequality and the zeros of Bloch functions. Duke Math. J. 57, p. 519-535 (1988). | DOI | MR | Zbl

Cited by Sources: