We establish a regularity result for conformal metrics with unit volume, scalar curvature bounds for and first eigenvalue of bounded from below by a constant
On démontre un résultat sur la régularité de métriques conformes de volumes unitaires avec une borne supérieure sur la norme de la courbure scalaire pour , et une borne inférieure sur la première valeur propre de par une constante
@article{AFST_2016_6_25_5_1079_0, author = {Henrik Matthiesen}, title = {Regularity of conformal metrics with large first eigenvalue}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1079--1094}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {5}, year = {2016}, doi = {10.5802/afst.1523}, mrnumber = {3582121}, zbl = {1373.53052}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1523/} }
TY - JOUR AU - Henrik Matthiesen TI - Regularity of conformal metrics with large first eigenvalue JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 SP - 1079 EP - 1094 VL - 25 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1523/ DO - 10.5802/afst.1523 LA - en ID - AFST_2016_6_25_5_1079_0 ER -
%0 Journal Article %A Henrik Matthiesen %T Regularity of conformal metrics with large first eigenvalue %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2016 %P 1079-1094 %V 25 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1523/ %R 10.5802/afst.1523 %G en %F AFST_2016_6_25_5_1079_0
Henrik Matthiesen. Regularity of conformal metrics with large first eigenvalue. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 5, pp. 1079-1094. doi : 10.5802/afst.1523. https://afst.centre-mersenne.org/articles/10.5802/afst.1523/
[1] Brooks (R.), Perry (P.), Yang (P.).— Isospectral sets of conformally equivalent metrics. Duke Math. J. 58, no.1, p. 131-150 (1989). | DOI | Zbl
[2] Chang (S.-Y. A.), Gursky (M.), Wolff (T).— Lack of compactness in conformal metrics with curvature. J. Geom. Anal. 4, no.2, p. 143-153 (1994). | DOI | Zbl
[3] Chang (S.-Y. A.), Yang (P. C.-P.).— Compactness of isospectral conformal metrics on . Comment. Math. Helv. 64, no.3, p. 363-374 (1989). | DOI | Zbl
[4] Chang (S.-Y. A.), Yang (P. C.-P.).— Isospectral conformal metrics on -manifolds. J. Amer. Math. Soc. 3, no.1, p. 117-145 (1990). | DOI
[5] Colbois (B.), El Soufi (A.).— Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’. Ann. Global Anal. Geom. 24, no.4 p. 337-349 (2003). | DOI | Zbl
[6] EL Soufi (A.), Ilias (S.).— Immersions minimales, première valeur propre du laplacien et volume conforme. Math. Ann. 275, no.2, p. 257-267 (1986). | DOI | Zbl
[7] Gursky (M.).— Compactness of conformal metrics with integral bounds on curvature. Duke Math. J. 72, no.2, p. 339-367 (1993). | DOI | Zbl
[8] Hersch (J.).— Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér. A-B 270, A1645-A1648 (1993). | Zbl
[9] Kokarev (G.).— Variational aspects of Laplace eigenvalues on Riemannian surfaces. Adv. Math. 258, p. 191-239 (2014). | DOI | Zbl
[10] Korevaar (N.).— Upper bounds for eigenvalues of conformal metrics. J. Differ. Geom. 37, no.1, p. 73-93 (1993). | DOI | Zbl
[11] Li (P.), Yau (S. T.).— A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math 69, no.2, p. 269-291 (1982). | DOI | Zbl
[12] Morrey Jr. (C. B.).— Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften Band 130, ix+506 pp. (1966). | DOI
[13] Nadirashvili (N.).— Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal. 6, no.5, p. 877-897 (1996). | DOI | Zbl
[14] Petrides (R.).— On a rigidity result for the first conformal eigenvalue of the Laplacian. J. Spectr. Theory 5, no.1 p. 227-234 (2015). | DOI | Zbl
[15] Petrides (R.).— Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces. Geom. Funct. Anal. 4, no.4 p. 1336-1376 (2014). | DOI | Zbl
[16] Trudinger (N. S.).— Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22, p. 265-274 (1968). | Zbl
Cited by Sources: