Soit une représentation unitaire de dimension finie d’un groupe munie d’un ensemble générateur symétrique à -éléments. Fixons et supposons que le spectre de est inclus dans (il y a donc un trou spectral ). Soit le nombre de représentations irréductibles distinctes de dimension qui apparaissent dans la décomposition de . Soit alors où le sup court sur toutes les possibles avec fixés. Nous démontrons l’existence de constantes positives et telles que, pour tout entier suffisamment grand (i.e. ou peut dépendre de ) et pour tout , on a . Les mêmes bornes sont valables si, dans , on compte seulement le nombre de représentations irréductibles distinctes de dimension exactement .
Let be a finite dimensional unitary representation of a group with a generating symmetric -element set . Fix . Assume that the spectrum of is included in (so there is a spectral gap ). Let be the number of distinct irreducible representations of dimension that appear in . Then let where the supremum runs over all with fixed. We prove that there are positive constants and such that, for all sufficiently large integer (i.e. with depending on ) and for all , we have . The same bounds hold if, in , we count only the number of distinct irreducible representations of dimension exactly .
Gilles Pisier 1
@article{AFST_2017_6_26_2_451_0, author = {Gilles Pisier}, title = {Quantum expanders and growth of group representations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {451--462}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {2}, year = {2017}, doi = {10.5802/afst.1541}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1541/} }
TY - JOUR AU - Gilles Pisier TI - Quantum expanders and growth of group representations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 451 EP - 462 VL - 26 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1541/ DO - 10.5802/afst.1541 LA - en ID - AFST_2017_6_26_2_451_0 ER -
%0 Journal Article %A Gilles Pisier %T Quantum expanders and growth of group representations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 451-462 %V 26 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1541/ %R 10.5802/afst.1541 %G en %F AFST_2017_6_26_2_451_0
Gilles Pisier. Quantum expanders and growth of group representations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 2, pp. 451-462. doi : 10.5802/afst.1541. https://afst.centre-mersenne.org/articles/10.5802/afst.1541/
[1] Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008, 486 pages
[2] Quantum expanders: motivation and construction, Theory Comput., Volume 6 (2010), pp. 47-79 (electronic) | DOI
[3] Quantum expanders and the quantum entropy difference problem (2007) (https://arxiv.org/abs/quant-ph/0702129)
[4] Uniform expansion bounds for Cayley graphs of , Ann. Math., Volume 167 (2008) no. 2, pp. 625-642 | DOI
[5] Property (T) for noncommutative universal lattices, Invent. Math., Volume 179 (2010) no. 2, pp. 303-347 | DOI
[6] On the spectrum of the sum of generators for a finitely generated group, Isr. J. Math., Volume 81 (1993) no. 1–2, pp. 65-96 | DOI
[7] Quantum expanders from any classical Cayley graph expander, Quantum Inf. Comput., Volume 8 (2008) no. 8–9, pp. 715-721
[8] Random unitaries give quantum expanders, Phys. Rev. A, Volume 76 (2007) no. 3 (ID 032315, 11 pages) | DOI
[9] Classical and quantum tensor product expanders, Quantum Inf. Comput., Volume 9 (2009) no. 3–4, pp. 336-360
[10] Expander graphs and their applications, Bull. Am. Math. Soc., Volume 43 (2006) no. 4, pp. 439-561 | DOI
[11] Symmetric groups and expander graphs, Invent. Math., Volume 170 (2007) no. 2, pp. 327-354 | DOI
[12] Universal lattices and unbounded rank expanders, Invent. Math., Volume 170 (2007) no. 2, pp. 297-326 | DOI
[13] Finite simple groups as expanders, Proc. Natl. Acad. Sci. USA, Volume 103 (2006) no. 16, pp. 6116-6119 | DOI
[14] Cartesian products as profinite completions, Int. Math. Res. Not., Volume 2006 (2006) no. 20 (ID 72947, 17 pages)
[15] Representation growth of linear groups, J. Eur. Math. Soc., Volume 10 (2008) no. 2, pp. 351-390 | DOI
[16] Discrete groups, expanding graphs and invariant measures, Progress in Mathematics, 125, Birkhäuser, 1994, xi+195 pages
[17] Expander graphs in pure and applied mathematics, Bull. Am. Math. Soc., Volume 49 (2012) no. 1, pp. 113-162 | DOI
[18] Expanders in group algebras, Combinatorica, Volume 24 (2004) no. 4, pp. 659-680 | DOI
[19] The volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, 94, Cambridge University Press, 1989, xv+250 pages
[20] Quantum Expanders and Geometry of Operator Spaces, J. Eur. Math. Soc., Volume 16 (2014) no. 6, pp. 1183-1219 | DOI
[21] On isolated points in the dual spaces of locally compact groups, Math. Ann., Volume 218 (1975), pp. 19-34 | DOI
[22] -algebras associated with groups with Kazhdan’s property T, Ann. Math., Volume 134 (1991) no. 2, pp. 423-431 | DOI
[23] lecture notes for the 22nd mcgill invitational workshop on computational complexity (Bellairs Institute Holetown, Barbados Lecturers: Ben Green and Avi Wigderson)
Cité par Sources :