Data assimilation for geophysical fluids
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 4, pp. 767-793.

L’assimilation de données est l’ensemble des techniques qui permettent de combiner un modèle et des observations. Le but est ici d’identifier l’état d’un système géophysique à partir de données discrètes en temps et en espace. Après un rappel de l’état de l’art en assimilation de données (méthode variationnelle 4D-VAR et approche duale 4D-PSAS, filtres séquentiels de type Kalman), nous présentons l’algorithme du nudging direct et rétrograde, ainsi que son extension naturelle (le nudging direct et rétrograde diffusif) à certains modèles géophysiques contenant un terme de diffusion.

Data assimilation is the domain at the interface between observations and models, which makes it possible to identify the global structure of a geophysical system from a set of discrete space-time data. After recalling state-of-the-art data assimilation methods, the variational 4D-VAR algorithm and the dual variational 4D-PSAS algorithm, and sequential Kalman filters, we will present the Back and Forth Nudging (BFN) algorithm, and the Diffusive Back and Forth Nudging (DBFN) algorithm, which is a natural extension of the BFN to some particular diffusive models.

Publié le :
DOI : 10.5802/afst.1552

Didier Auroux 1

1 Université Côte d’Azur, Inria, CNRS, LJAD, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2017_6_26_4_767_0,
     author = {Didier Auroux},
     title = {Data assimilation for geophysical fluids},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {767--793},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     doi = {10.5802/afst.1552},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1552/}
}
TY  - JOUR
AU  - Didier Auroux
TI  - Data assimilation for geophysical fluids
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2017
SP  - 767
EP  - 793
VL  - 26
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1552/
DO  - 10.5802/afst.1552
LA  - en
ID  - AFST_2017_6_26_4_767_0
ER  - 
%0 Journal Article
%A Didier Auroux
%T Data assimilation for geophysical fluids
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2017
%P 767-793
%V 26
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1552/
%R 10.5802/afst.1552
%G en
%F AFST_2017_6_26_4_767_0
Didier Auroux. Data assimilation for geophysical fluids. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 4, pp. 767-793. doi : 10.5802/afst.1552. https://afst.centre-mersenne.org/articles/10.5802/afst.1552/

[1] L. Amodei Solution approchée pour un problème d’assimilation de données météorologiques avec prise en compte de l’erreur modèle, C. R. Acad. Sci. Paris, Ser. II, Volume 321 (1995), pp. 1087-1094

[2] Didier Auroux Étude de différentes méthodes d’assimilation de données pour l’environnement, University of Nice - Sophia Antipolis (France) (2003) (Ph. D. Thesis)

[3] Didier Auroux Generalization of the dual variational data assimilation algorithm to a nonlinear layered quasi-geostrophic ocean model, Inverse Probl., Volume 23 (2007) no. 6, pp. 2485-2503 | DOI | Zbl

[4] Didier Auroux The Back and Forth Nudging algorithm applied to a shallow water model, comparison and hybridization with the 4D-VAR, Int. J. Numer. Methods Fluids, Volume 61 (2009) no. 8, pp. 911-929 | DOI | Zbl

[5] Didier Auroux; Patrick Bansart; Jacques Blum An evolution of the Back and Forth Nudging for geophysical data assimilation: application to Burgers equation and comparisons, Inverse Probl. Sci. Eng., Volume 21 (2013) no. 3, pp. 399-419 | DOI | Zbl

[6] Didier Auroux; Jacques Blum Data assimilation methods for an oceanographic problem, Multidisciplinary methods for analysis optimization and control of complex systems (Mathematics in Industry), Volume 6, Springer, 2004 | Zbl

[7] Didier Auroux; Jacques Blum Back and forth nudging algorithm for data assimilation problems, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 12, pp. 873-878 | DOI | Zbl

[8] Didier Auroux; Jacques Blum A nudging-based data assimilation method for oceanographic problems: the Back and Forth Nudging (BFN) algorithm, Nonlin. Proc. Geophys., Volume 15 (2008), pp. 305-319 | DOI

[9] Didier Auroux; Jacques Blum; Maëlle Nodet Diffusive Back and Forth Nudging algorithm for data assimilation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 15-16, pp. 849-854 | DOI | Zbl

[10] Didier Auroux; Silvère Bonnabel Symmetry-based observers for some water-tank problems, IEEE Trans. Autom. Contr., Volume 56 (2011) no. 5, pp. 1046-1058 | DOI | Zbl

[11] Didier Auroux; Maëlle Nodet The Back and Forth Nudging algorithm for data assimilation problems: theoretical results on transport equations, ESAIM, Control Optim. Calc. Var., Volume 18 (2012) no. 2, pp. 318-342 | DOI | Zbl

[12] Andrew F. Bennett Inverse methods in physical oceanography, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1992, xvi+346 pages | Zbl

[13] Andrew F. Bennett Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press, 2002, xxii+234 pages | Zbl

[14] Jacques Blum; François-Xavier Le Dimet; I. Michael Navon Data assimilation for geophysical fluids, Computational methods for the atmosphere and the oceans (Handbook of Numerical Analysis), Volume 14, Elsevier, 2009, pp. 385-441 | DOI

[15] Alexandre Boilley; Jean-françois Mahfouf Assimilation of low-level wind in a high resolution mesoscale model using the back and forth nudging algorithm, Tellus A, Volume 64 (2012), 18697 pages | DOI

[16] Charles George Broyden A new double-rank minimization algorithm, Notices American Math. Soc., Volume 16 (1969), 670 pages

[17] M. A. Cane; A. Kaplan; R. N. Miller; B. Tang; E. C. Hackert; A. J. Busalacchi Mapping tropical Pacific sea level: data assimilation via a reduced state Kalman filter, J. Geophys. Res., Volume 101(C10) (1996), pp. 22599-22617 | DOI

[18] Alberto Carrassi; Stéphane Vannitsem Deterministic treatment of model error in geophysical data assimilation, Mathematical Paradigms of Climate Science (Springer INdAM Series), Volume 15 (2016), pp. 175-213 | Zbl

[19] Philippe Courtier Dual formulation of four-dimensional variational assimilation, Quart. J. R. Meteor. Soc., Volume 123 (1997), pp. 2449-2461 | DOI

[20] Philippe Courtier; Olivier Talagrand Variational assimilation of meteorological observations with the adjoint equations Part 2. Numerical results, Quart. J. Roy. Meteor. Soc., Volume 113 (1987), pp. 1329-1347 | DOI

[21] Ashley Donovan; Mazyar Mirrahimi; Pierre Rouchon Back and Forth Nudging for quantum state reconstruction, 4th Int. Symp. Communications Control Signal Proc. (2010), pp. 1-5 | DOI

[22] Sophie Durbiano Vecteurs caractéristiques de modèles océaniques pour la réduction d’ordre en assimilation de données, University of Grenoble I (France) (2001) (Ph. D. Thesis)

[23] Geir Evensen Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model, J. Geophys. Res., Volume 97 (1992), pp. 17905-17924 | DOI

[24] Geir Evensen Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., Volume 99 (1994) no. C5, pp. 10143-10162 | DOI

[25] Geir Evensen The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, Volume 53 (2003), pp. 343-367 | DOI

[26] Geir Evensen Data assimilation: the Ensemble Kalman Filter, Springer, 2009

[27] Ichiro Fukumori Assimilation of Topex sea level measurements with a reduced-gravity, shallow water model of the tropical Pacific Ocean, J. Geophys. Res., Volume 100(C12) (1995), pp. 25027-25039 | DOI

[28] Ichiro Fukumori; Benveniste Jérôme; Carl Wunsch; Dale B. Haidvogel Assimilation of sea surface topography into an ocean circulation model using a steady state smoother, J. Phys. Oceanogr., Volume 23 (1993), pp. 1831-1855 | DOI

[29] Pierre Gauthier; Philippe Courtier; Patrick Moll Assimilation of simulated wind lidar data with a Kalman filter, Mon. Wea. Rev., Volume 121 (1993), pp. 1803-1820 | DOI

[30] Arthur Gelb Applied Optimal Estimation, MIT Press, 1974

[31] Michael Ghil Meteorological data assimilation for oceanographers. Part I: Description and theoretical framework, Dyn. Atmos. Oceans, Volume 13 (1989) no. 3-4, pp. 171-218 | DOI

[32] Michael Ghil; S.E. Cohn; A. Dalcher Sequential estimation, data assimilation and initialization, The interaction between objective analysis and initialization (Publ. Meteor.), Volume 127, McGill University, 1982

[33] Michael Ghil; Paola Manalotte-Rizzoli Data assimilation in meteorology and oceanography, Adv. Geophys., Volume 33 (1991), pp. 141-265 | DOI

[34] Jean Charles Gilbert; Claude Lemaréchal Some numerical experiments with variable storage quasi-Newton algorithms, Math. Program., Volume 45 (1989), pp. 407-435 | DOI | Zbl

[35] L. Gourdeau; Sabine Arnault; Y. Ménard; Jacques Merle GEOSAT sea-level assimilation in a tropical Atlantic model using Kalman filter, Ocean. Acta, Volume 15 (1992), pp. 567-574

[36] Andreas Griewank Automatic Differentiation, Princeton Companion to Applied Mathematics, Princeton University Press, 2014

[37] James E. Hoke; Richard A. Anthes The initialization of numerical models by a dynamic initialization technique, Mon. Wea. Rev., Volume 104 (1976), pp. 1551-1556 | DOI

[38] William R. Holland The role of mesoscale eddies in the general circulation of the ocean, J. Phys. Oceanogr., Volume 8 (1978) no. 3, pp. 363-392 | DOI

[39] P. L. Houtekamer; Herschel L. Mitchell Data assimilation using an ensemble Kalman filter technique, Mon. Wea. Rev., Volume 126 (1998), pp. 796-811 | DOI

[40] Andrew H. Jazwinski Stochastic Processes and Filtering Theory, Mathematics in Science and Engineering, 64, Academic Press, 1970, xiv+376 pages | Zbl

[41] Eugenia Kalnay Atmospheric modeling, data assimilation and predictability, Cambridge University Press, 2003, 341 pages

[42] François-Xavier Le Dimet; Olivier Talagrand Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, Volume 38 (1986) no. 2, pp. 97-110 | DOI

[43] Zaki Leghtas; Mazyar Mirrahimi; Pierre Rouchon Observer-based quantum state estimation by continuous weak measurement, American Control Conference (ACC) (2011), pp. 4334-4339

[44] J. M. Lewis; J. C. Derber The use of adjoint equations to solve a variational adjustment problem with convective constraints, Tellus A, Volume 37 (1985), pp. 309-322 | DOI

[45] Jacques-Louis Lions Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, 1968, xii+426 pages | Zbl

[46] Dong C. Liu; Jorge Nocedal On the limited memory BFGS method for large scale optimization, Math. Program., Volume 45 (1989) no. 3, pp. 503-528 | DOI | Zbl

[47] Stéphane Louvel Étude d’un algorithme d’assimilation variationnelle de données à contrainte faible. Mise en œuvre sur le modèle océanique aux équations primitives MICOM, Université Paul Sabatier, Toulouse (France) (1999) (Ph. D. Thesis)

[48] Stéphane Louvel Implementation of a dual variational algorithm for assimilation of synthetic altimeter data in the oceanic primitive equation model MICOM, J. Geophys. Res., Volume 106 (2001), pp. 9199-9212 | DOI

[49] D. Luenberger Observers for multivariable systems, IEEE Trans. Autom. Contr., Volume 11 (1966), pp. 190-197 | DOI

[50] Bruno Luong; Jacques Blum; Jacques Verron A variational method for the resolution of a data assimilation problem in oceanography, Inverse Probl., Volume 14 (1998), pp. 979-997 | DOI

[51] Bijan Mohammadi; Olivier Pironneau Applied shape optimization for fluids, Numerical Mathematics and Scientific Computation, Clarendon Press, 2001, xvi+251 pages | Zbl

[52] Philippe Moireau; Dominique Chapelle Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems, ESAIM, Control Optim. Calc. Var., Volume 17 (2011) no. 2, pp. 380-405 erratum in ibid 17 (2011), no. 2, p. 406-409 | DOI | Zbl

[53] Andrew M. Moore Data assimilation in a quasi-geostrophic open-ocean model of the Gulf-Stream region using the adjoint model, J. Phys. Oceanogr., Volume 21 (1991), pp. 398-427 | DOI

[54] D. A. Nechaev; M. I. Yaremchuk Application of the adjoint technique to processing of a standard section data set: world ocean circulation experiment section S4 along 67 S in the Pacific Ocean, J. Geophys. Res., Volume 100(C1) (1994), pp. 865-879 | DOI

[55] Joseph Pedlosky Geophysical fluid dynamics, Springer, 1979, xii+624 pages | Zbl

[56] Dinh Tuan Pham; Jacques Verron; Marie-Christine Roubaud A Singular Evolutive Extended Kalman filter for data assimilation in oceanography, Inverse Probl., Volume 14 (1998), pp. 979-997 | DOI

[57] Karim Ramdani; Marius Tucsnak; George Weiss Recovering the initial state of an infinite-dimensional system using observers, Automatica, Volume 46 (2010) no. 10, pp. 1616-1625 | DOI | Zbl

[58] N. Rostaing-Schmidt; E. Hassold Basic function representation of programs for automatic differentiation in the Odyssée system, High performance computing in the geosciences, Kluwer Academic Publishers, 1994, pp. 207-222

[59] Jens Schröter; Ulrike Seiler; Manfred Wenzel Variational assimilation of GEOSAT data into an eddy-resolving model of the Gulf Stream area, J. Phys. Oceanogr., Volume 23 (1993), pp. 925-953 | DOI

[60] Julio Sheinbaum; David L. T. Anderson Variational assimilation of XBT data. Part I, J. Phys. Oceanogr., Volume 20 (1990), pp. 672-688 | DOI

[61] David R. Stauffer; Jian-Wen Bao Optimal determination of nudging coefficients using the adjoint equations, Tellus A, Volume 45 (1993), pp. 358-369 | DOI

[62] David R. Stauffer; Nelson L. Seaman Use of four dimensional data assimilation in a limited area mesoscale model - Part 1: Experiments with synoptic-scale data, Mon. Wea. Rev., Volume 118 (1990), pp. 1250-1277 | DOI

[63] Olivier Talagrand Assimilation of observations, an introduction, Journal of the Met. Soc. of Japan, Volume 75 (1997) no. 1B, pp. 191-209 | DOI | Zbl

[64] Olivier Talagrand; Philippe Courtier Variational assimilation of meteorological observations with the adjoint vorticity equation. Part I: Theory, Quart. J. R. Meteor. Soc., Volume 113 (1987), pp. 1311-1328 | DOI

[65] William Carlisle Thacker; Robert Bryan Long Fitting dynamics to data, J. Geophys. Res., Volume 93 (1988), pp. 1227-1240 | DOI

[66] F. Veersé; Didier Auroux; M. Fisher Limited-memory BFGS diagonal preconditioners for a data assimilation problem in meteorology, Optimization and Engineering, Volume 1 (2000) no. 3, pp. 323-339 | DOI

[67] Jacques Verron; L. Gourdeau; D. T. Pham; R. Murtugudde; A. J. Busalacchi An extended Kalman filter to assimilate satellite altimeter data into a non-linear numerical model of the tropical Pacific Ocean: method and validation, J. Geophys. Res., Volume 104 (1999), pp. 5441-5458 | DOI

[68] Jacques Verron; William R. Holland Impact de données d’altimétrie satellitaire sur les simulations numériques des circulations générales océaniques aux latitudes moyennes, Ann. Geophys., Volume 7 (1989) no. 1, pp. 31-46

[69] Arthur Vidard Vers une prise en compte des erreurs modèle en assimilation de données 4D-variationnelle - Application à un modèle réaliste d’océan, University of Grenoble I (France) (2001) (Ph. D. Thesis)

[70] Arthur Vidard; François-Xavier Le Dimet; A. Piacentini Determination of optimal nudging coefficients, Tellus A, Volume 55 (2003), pp. 1-15 | DOI

[71] X. Zou; I. Michael Navon; François-Xavier Le Dimet An optimal nudging data assimilation scheme using parameter estimation, Quart. J. Roy. Meteor. Soc., Volume 118 (1992), pp. 1163-1186 | DOI

Cité par Sources :