Unbounded rough drivers
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 795-830.

We propose a theory of linear differential equations driven by unbounded operator-valued rough signals. As an application we consider rough linear transport equations and more general linear hyperbolic symmetric systems of equations driven by time-dependent vector fields which are only distributions in the time direction.

Nous proposons une théorie des équations différentielles linéaires dirigées par des processus à valeurs opérateurs non bornés. Nous appliquons cette théorie à une équation de transport pris au sens rugueux ainsi qu’à des systèmes d’équations symétriques, linéaires paraboliques dirigées par des champs de vecteurs dépendant du temps. Ces derniers sont des distributions en temps.

Published online:
DOI: 10.5802/afst.1553

Ismael Bailleul 1; Massimiliano Gubinelli 2

1 IRMAR, 263 Avenue du General Leclerc, 35042 RENNES, France
2 Institut Universitaire de France — CEREMADE & CNRS UMR 7534, Université Paris Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 PARIS cedex 16
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2017_6_26_4_795_0,
     author = {Ismael Bailleul and Massimiliano Gubinelli},
     title = {Unbounded rough drivers},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {795--830},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     doi = {10.5802/afst.1553},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1553/}
}
TY  - JOUR
AU  - Ismael Bailleul
AU  - Massimiliano Gubinelli
TI  - Unbounded rough drivers
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2017
SP  - 795
EP  - 830
VL  - 26
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1553/
DO  - 10.5802/afst.1553
LA  - en
ID  - AFST_2017_6_26_4_795_0
ER  - 
%0 Journal Article
%A Ismael Bailleul
%A Massimiliano Gubinelli
%T Unbounded rough drivers
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2017
%P 795-830
%V 26
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1553/
%R 10.5802/afst.1553
%G en
%F AFST_2017_6_26_4_795_0
Ismael Bailleul; Massimiliano Gubinelli. Unbounded rough drivers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 795-830. doi : 10.5802/afst.1553. https://afst.centre-mersenne.org/articles/10.5802/afst.1553/

[1] Ismaël Bailleul Flows driven by rough paths, Rev. Mat. Iberoam., Volume 31 (2015) no. 3, pp. 901-934 | DOI | Zbl

[2] Ismaël Bailleul; Sebastian Riedel Rough flows (2015) (https://arxiv.org/abs/1505.01692v1)

[3] Hakima Bessaih; Massimiliano Gubinelli; Francesco Russo The evolution of a random vortex filament, Ann. Probab., Volume 33 (2005) no. 5, pp. 1825-1855 | DOI | Zbl

[4] Michael Caruana; Peter K. Friz Partial differential equations driven by rough paths, J. Differ. Equations, Volume 247 (2009) no. 1, pp. 140-173 | DOI | Zbl

[5] Michael Caruana; Peter K. Friz; Harald Oberhauser A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 1, pp. 27-46 | DOI | Zbl

[6] Rémi Catellier Rough linear transport equation with an irregular drift (2014) (https://arxiv.org/abs/1501.03000)

[7] Rémi Catellier; Massimiliano Gubinelli Averaging along irregular curves and regularisation of ODEs (2014) (https://arxiv.org/abs/1205.1735v2)

[8] Laure Coutin; Antoine Lejay Perturbed linear rough differential equations, Ann. Math. Blaise Pascal, Volume 21 (2014) no. 1, pp. 103-150 | DOI | Zbl

[9] Aurélien Deya; Massimiliano Gubinelli; Martina Hofmanová; Samy Tindel A priori estimates for rough PDEs with application to rough conservation laws (2016) (https://arxiv.org/abs/1604.00437)

[10] Aurélien Deya; Massimiliano Gubinelli; Samy Tindel Non-linear rough heat equations, Probab. Theory Relat. Fields, Volume 153 (2012) no. 1-2, pp. 97-147 | DOI | Zbl

[11] Joscha Diehl; Peter K. Friz; Wilhelm Stannat Stochastic partial differential equations: a rough paths view, Ann. Fac. Sci. Toulouse, Volume 26 (2017) no. 4, pp. 911-947 | DOI

[12] Ronald J. DiPerna; Pierre-Louis Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | Zbl

[13] Denis Feyel; Arnaud De La Pradelle; Gabriel Mokobodzki A non-commutative sewing lemma, Electron. Commun. Probab., Volume 13 (2008), pp. 24-34 | DOI | Zbl

[14] Denis Feyel; Arnaud de La Pradelle Curvilinear integrals along enriched paths, Electron. J. Probab., Volume 11 (2006), pp. 860-892 | DOI | Zbl

[15] Franco Flandoli The interaction between noise and transport mechanisms in PDEs, Milan J. Math., Volume 79 (2011) no. 2, pp. 543-560 | DOI | Zbl

[16] Peter K. Friz; Benjamin Gess Stochastic scalar conservation laws driven by rough paths (2014) (https://arxiv.org/abs/1403.6785v1)

[17] Peter K. Friz; Harald Oberhauser Rough path limits of a Wong-Zakai type with a modified drift term, J. Funct. Anal., Volume 256 (2009) no. 10, pp. 3236-3256 | DOI | Zbl

[18] Peter K. Friz; Harald Oberhauser On the splitting-up method for rough (partial) differential equations, J. Differ. Equations, Volume 251 (2011) no. 2, pp. 316-338 | DOI | Zbl

[19] Peter K. Friz; Harald Oberhauser Rough path stability of (semi-)linear SPDEs, Probab. Theory Relat. Fields, Volume 158 (2014) no. 1-2, pp. 401-434 | DOI | Zbl

[20] Peter K. Friz; Nicolas B. Victoir Multidimensional stochastic processes as rough paths. Theory and applications, Cambridge Studies in Advanced Mathematics, 120, Cambridge University Press, 2010, xiv+656 pages | Zbl

[21] Benjamin Gess; Panagiotis E. Souganidis Scalar conservation laws with multiplie rough fluxes (2014) (https://arxiv.org/abs/1406.2978v2)

[22] Massimiliano Gubinelli Controlling rough paths, J. Funct. Anal., Volume 216 (2004) no. 1, pp. 86-140 | DOI | Zbl

[23] Massimiliano Gubinelli Rough solutions for the periodic Korteweg–de Vries equation, Commun. Pure Appl. Anal., Volume 11 (2012) no. 2, pp. 709-733 | DOI | Zbl

[24] Massimiliano Gubinelli; Peter Imkeller; Nicolas Perkowski Paracontrolled distributions and singular PDEs (2014) (https://arxiv.org/abs/1210.2684v3)

[25] Massimiliano Gubinelli; Samy Tindel Rough evolution equations, Ann. Probab., Volume 38 (2010) no. 1, pp. 1-75 | DOI | Zbl

[26] Massimiliano Gubinelli; Samy Tindel; Iván Torrecilla Controlled viscosity solutions of fully nonlinear rough PDEs (2014) (https://arxiv.org/abs/1403.2832)

[27] Martin Hairer Rough stochastic PDEs, Commun. Pure Appl. Math., Volume 64 (2011) no. 11, pp. 1547-1585 | Zbl

[28] Martin Hairer Solving the KPZ equation, Ann. Math., Volume 178 (2013) no. 2, pp. 559-664 | DOI | Zbl

[29] Martin Hairer A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269-504 | DOI | Zbl

[30] Martin Hairer; Jan Maas; Hendrik Weber Approximating rough stochastic PDEs (2012) (https://arxiv.org/abs/1202.3094v1)

[31] Martin Hairer; Hendrik Weber Rough Burgers-like equations with multiplicative noise, Probab. Theory Relat. Fields, Volume 155 (2013) no. 1-2, pp. 71-126 erratum in ibid. 157 (2013), no. 3-4, p. 1011–1013 | DOI | Zbl

[32] Yaozhongand Hu; Khoa N. Lê Nonlinear Young integrals and differential systems in Hölder media (2014) (https://arxiv.org/abs/1404.7582v1)

[33] Stanislav Nicolayevich Kruzhkov First order quasilinear equations in several independent variables, Math. USSR, Sb., Volume 10 (1970), pp. 217-243 | DOI | Zbl

[34] Pierre-Louis Lions; Benoît Perthame; Panagiotis E. Souganidis Scalar conservation laws with rough (stochastic) fluxes, Stoch. Partial Differ. Equ., Anal. Comput., Volume 1 (2013) no. 4, pp. 664-686 | Zbl

[35] Pierre-Louis Lions; Benoît Perthame; Panagiotis E. Souganidis Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case (2014) (https://arxiv.org/abs/1403.4424)

[36] Terry J. Lyons Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | DOI | Zbl

[37] Terry J. Lyons; Michael Caruana; Thierry Lévy Differential equations driven by rough paths, Lecture Notes in Mathematics, 1908, Springer, 2007, xviii+109 pages | Zbl

[38] Terry J. Lyons; Zhongmin Qian System control and rough paths, Oxford Mathematical Monographs, Clarendon Press, 2002, x+216 pages | Zbl

[39] Michael Reed; Barry Simon Methods of modern mathematical physics, Academic Press, 1980, xv+400 pages | Zbl

Cited by Sources: