Nous proposons une théorie des équations différentielles linéaires dirigées par des processus à valeurs opérateurs non bornés. Nous appliquons cette théorie à une équation de transport pris au sens rugueux ainsi qu’à des systèmes d’équations symétriques, linéaires paraboliques dirigées par des champs de vecteurs dépendant du temps. Ces derniers sont des distributions en temps.
We propose a theory of linear differential equations driven by unbounded operator-valued rough signals. As an application we consider rough linear transport equations and more general linear hyperbolic symmetric systems of equations driven by time-dependent vector fields which are only distributions in the time direction.
Ismael Bailleul 1 ; Massimiliano Gubinelli 2
@article{AFST_2017_6_26_4_795_0, author = {Ismael Bailleul and Massimiliano Gubinelli}, title = {Unbounded rough drivers}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {795--830}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {4}, year = {2017}, doi = {10.5802/afst.1553}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1553/} }
TY - JOUR AU - Ismael Bailleul AU - Massimiliano Gubinelli TI - Unbounded rough drivers JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 795 EP - 830 VL - 26 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1553/ DO - 10.5802/afst.1553 LA - en ID - AFST_2017_6_26_4_795_0 ER -
%0 Journal Article %A Ismael Bailleul %A Massimiliano Gubinelli %T Unbounded rough drivers %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 795-830 %V 26 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1553/ %R 10.5802/afst.1553 %G en %F AFST_2017_6_26_4_795_0
Ismael Bailleul; Massimiliano Gubinelli. Unbounded rough drivers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 4, pp. 795-830. doi : 10.5802/afst.1553. https://afst.centre-mersenne.org/articles/10.5802/afst.1553/
[1] Flows driven by rough paths, Rev. Mat. Iberoam., Volume 31 (2015) no. 3, pp. 901-934 | DOI | Zbl
[2] Rough flows (2015) (https://arxiv.org/abs/1505.01692v1)
[3] The evolution of a random vortex filament, Ann. Probab., Volume 33 (2005) no. 5, pp. 1825-1855 | DOI | Zbl
[4] Partial differential equations driven by rough paths, J. Differ. Equations, Volume 247 (2009) no. 1, pp. 140-173 | DOI | Zbl
[5] A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 1, pp. 27-46 | DOI | Zbl
[6] Rough linear transport equation with an irregular drift (2014) (https://arxiv.org/abs/1501.03000)
[7] Averaging along irregular curves and regularisation of ODEs (2014) (https://arxiv.org/abs/1205.1735v2)
[8] Perturbed linear rough differential equations, Ann. Math. Blaise Pascal, Volume 21 (2014) no. 1, pp. 103-150 | DOI | Zbl
[9] A priori estimates for rough PDEs with application to rough conservation laws (2016) (https://arxiv.org/abs/1604.00437)
[10] Non-linear rough heat equations, Probab. Theory Relat. Fields, Volume 153 (2012) no. 1-2, pp. 97-147 | DOI | Zbl
[11] Stochastic partial differential equations: a rough paths view, Ann. Fac. Sci. Toulouse, Volume 26 (2017) no. 4, pp. 911-947 | DOI
[12] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | Zbl
[13] A non-commutative sewing lemma, Electron. Commun. Probab., Volume 13 (2008), pp. 24-34 | DOI | Zbl
[14] Curvilinear integrals along enriched paths, Electron. J. Probab., Volume 11 (2006), pp. 860-892 | DOI | Zbl
[15] The interaction between noise and transport mechanisms in PDEs, Milan J. Math., Volume 79 (2011) no. 2, pp. 543-560 | DOI | Zbl
[16] Stochastic scalar conservation laws driven by rough paths (2014) (https://arxiv.org/abs/1403.6785v1)
[17] Rough path limits of a Wong-Zakai type with a modified drift term, J. Funct. Anal., Volume 256 (2009) no. 10, pp. 3236-3256 | DOI | Zbl
[18] On the splitting-up method for rough (partial) differential equations, J. Differ. Equations, Volume 251 (2011) no. 2, pp. 316-338 | DOI | Zbl
[19] Rough path stability of (semi-)linear SPDEs, Probab. Theory Relat. Fields, Volume 158 (2014) no. 1-2, pp. 401-434 | DOI | Zbl
[20] Multidimensional stochastic processes as rough paths. Theory and applications, Cambridge Studies in Advanced Mathematics, 120, Cambridge University Press, 2010, xiv+656 pages | Zbl
[21] Scalar conservation laws with multiplie rough fluxes (2014) (https://arxiv.org/abs/1406.2978v2)
[22] Controlling rough paths, J. Funct. Anal., Volume 216 (2004) no. 1, pp. 86-140 | DOI | Zbl
[23] Rough solutions for the periodic Korteweg–de Vries equation, Commun. Pure Appl. Anal., Volume 11 (2012) no. 2, pp. 709-733 | DOI | Zbl
[24] Paracontrolled distributions and singular PDEs (2014) (https://arxiv.org/abs/1210.2684v3)
[25] Rough evolution equations, Ann. Probab., Volume 38 (2010) no. 1, pp. 1-75 | DOI | Zbl
[26] Controlled viscosity solutions of fully nonlinear rough PDEs (2014) (https://arxiv.org/abs/1403.2832)
[27] Rough stochastic PDEs, Commun. Pure Appl. Math., Volume 64 (2011) no. 11, pp. 1547-1585 | Zbl
[28] Solving the KPZ equation, Ann. Math., Volume 178 (2013) no. 2, pp. 559-664 | DOI | Zbl
[29] A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269-504 | DOI | Zbl
[30] Approximating rough stochastic PDEs (2012) (https://arxiv.org/abs/1202.3094v1)
[31] Rough Burgers-like equations with multiplicative noise, Probab. Theory Relat. Fields, Volume 155 (2013) no. 1-2, pp. 71-126 erratum in ibid. 157 (2013), no. 3-4, p. 1011–1013 | DOI | Zbl
[32] Nonlinear Young integrals and differential systems in Hölder media (2014) (https://arxiv.org/abs/1404.7582v1)
[33] First order quasilinear equations in several independent variables, Math. USSR, Sb., Volume 10 (1970), pp. 217-243 | DOI | Zbl
[34] Scalar conservation laws with rough (stochastic) fluxes, Stoch. Partial Differ. Equ., Anal. Comput., Volume 1 (2013) no. 4, pp. 664-686 | Zbl
[35] Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case (2014) (https://arxiv.org/abs/1403.4424)
[36] Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | DOI | Zbl
[37] Differential equations driven by rough paths, Lecture Notes in Mathematics, 1908, Springer, 2007, xviii+109 pages | Zbl
[38] System control and rough paths, Oxford Mathematical Monographs, Clarendon Press, 2002, x+216 pages | Zbl
[39] Methods of modern mathematical physics, Academic Press, 1980, xv+400 pages | Zbl
Cité par Sources :