We get diffusion equations of geometric nature for 1-currents through two different approaches. Partial existence and uniqueness results are discussed.
Nous obtenons, par deux approches différentes, des équations de diffusion de nature géométrique pour les 1-courants. Nous discutons quelques résultats d’existence et d’unicité.
Yann Brenier 1

@article{AFST_2017_6_26_4_831_0, author = {Yann Brenier}, title = {Geometric diffusions of 1-currents}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {831--846}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {4}, year = {2017}, doi = {10.5802/afst.1554}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1554/} }
TY - JOUR AU - Yann Brenier TI - Geometric diffusions of 1-currents JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 831 EP - 846 VL - 26 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1554/ DO - 10.5802/afst.1554 LA - en ID - AFST_2017_6_26_4_831_0 ER -
%0 Journal Article %A Yann Brenier %T Geometric diffusions of 1-currents %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 831-846 %V 26 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1554/ %R 10.5802/afst.1554 %G en %F AFST_2017_6_26_4_831_0
Yann Brenier. Geometric diffusions of 1-currents. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 831-846. doi : 10.5802/afst.1554. https://afst.centre-mersenne.org/articles/10.5802/afst.1554/
[1] Foundations of the new field theory, Proc. R. Soc. Lond., Ser. A, Volume 144 (1934), pp. 425-451 | DOI | Zbl
[2] Hydrodynamic structure of the augmented Born-Infeld equations, Arch. Ration. Mech. Anal., Volume 172 (2004) no. 1, pp. 65-91 | DOI | Zbl
[3] Topology preserving diffusion of divergence-free vector fields, Commun. Math. Phys., Volume 330 (2014) no. 2, pp. 757-770 | DOI | Zbl
[4] A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput., Volume 11 (1990) no. 2, pp. 293-310 | DOI | Zbl
[5] On the Heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differ. Equ., Volume 39 (2010) no. 1-2, pp. 101-120 | DOI | Zbl
[6] Mathematical topics in fluid mechanics. Vol. 1: Incompressible models, Oxford Lecture Series in Mathematics and its Applications, 3, Clarendon Press, 1996, xiv+237 pages | Zbl
[7] Une méthode particulaire déterministe pour des équations diffusives non linéaires, C. R. Acad. Sci., Paris, Sér. I, Math., Volume 332 (2001) no. 4, pp. 369-376 | DOI | Zbl
[8] Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology, J. Fluid Mech., Volume 159 (1985), pp. 359-378 | DOI | Zbl
[9] Construction of three-dimensional stationary Euler flows from pseudo-advected vorticity equations, Proc. R. Soc. Lond., Ser. A, Volume 459 (2003) no. 2038, pp. 2393-2398 | DOI | Zbl
[10] Magnetohydrodynamic approaches to measure-valued solutions of the two-dimensional stationary Euler equations, Bull. Inst. Math., Acad. Sin. (N.S.), Volume 2 (2007) no. 2, pp. 139-154 | Zbl
[11] String theory. Volume I: An introduction to the Bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1998, xix+402 pages | Zbl
[12] Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, St. Petersbg. Math. J., Volume 5 (1994) no. 4, pp. 841-867 | Zbl
Cited by Sources: