These lecture notes grew out of a series of lectures given by the second named author in short courses in Toulouse, Matsumoto, and Darmstadt. The main aim is to explain some aspects of the theory of “Regularity structures” developed recently by Hairer in [27]. This theory gives a way to study well-posedness for a class of stochastic PDEs that could not be treated previously. Prominent examples include the KPZ equation as well as the dynamic model.
Such equations can be expanded into formal perturbative expansions. Roughly speaking the theory of regularity structures provides a way to truncate this expansion after finitely many terms and to solve a fixed point problem for the “remainder”. The key ingredient is a new notion of “regularity” which is based on the terms of this expansion.
Ces notes sont basées sur trois cours que le deuxième auteur a donnés à Toulouse, Matsumoto et Darmstadt. L’objectif principal est d’expliquer certains aspects de la théorie des « structures de régularité » développée récemment par Hairer [27]. Cette théorie permet de montrer que certaines EDP stochastiques, qui ne pouvaient pas être traitées auparavant, sont bien posées. Parmi les exemples se trouvent l’équation KPZ et le modèle dynamique.
Telles équations peuvent être développées en séries perturbatives formelles. La théorie des structures de régularité permet de tronquer ce développement aprés un nombre fini de termes, et de résoudre un problème de point fixe pour le reste. L’idée principale est une nouvelle notion de régularité des distributions, qui dépend des termes de ce développement.
Ajay Chandra 1; Hendrik Weber 1
@article{AFST_2017_6_26_4_847_0, author = {Ajay Chandra and Hendrik Weber}, title = {Stochastic {PDEs,} {Regularity} structures, and interacting particle systems}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {847--909}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {4}, year = {2017}, doi = {10.5802/afst.1555}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1555/} }
TY - JOUR AU - Ajay Chandra AU - Hendrik Weber TI - Stochastic PDEs, Regularity structures, and interacting particle systems JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 847 EP - 909 VL - 26 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1555/ DO - 10.5802/afst.1555 LA - en ID - AFST_2017_6_26_4_847_0 ER -
%0 Journal Article %A Ajay Chandra %A Hendrik Weber %T Stochastic PDEs, Regularity structures, and interacting particle systems %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 847-909 %V 26 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1555/ %R 10.5802/afst.1555 %G en %F AFST_2017_6_26_4_847_0
Ajay Chandra; Hendrik Weber. Stochastic PDEs, Regularity structures, and interacting particle systems. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 847-909. doi : 10.5802/afst.1555. https://afst.centre-mersenne.org/articles/10.5802/afst.1555/
[1] Geometric analysis of fields and Ising models. I, II, Commun. Math. Phys., Volume 86 (1982) no. 1, pp. 1-48 http://0-projecteuclid.org.pugwash.lib.warwick.ac.uk/getRecord?id=euclid.cmp/1103921614 | DOI | MR | Zbl
[2] Probability distribution of the free energy of the continuum directed random polymer in dimensions, Commun. Pure Appl. Math., Volume 64 (2011) no. 4, pp. 466-537 | DOI | MR | Zbl
[3] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | Zbl
[4] Stochastic Burgers and KPZ equations from particle systems, Commun. Math. Phys., Volume 183 (1997) no. 3, pp. 571-607 | DOI | MR | Zbl
[5] Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE, Teor. Veroyatnost. i Primenen., Volume 38 (1993) no. 4, pp. 689-741 | DOI | MR | Zbl
[6] Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | Zbl
[7] A new proof of the existence and nontriviality of the continuum and quantum field theories, Commun. Math. Phys., Volume 91 (1983) no. 2, pp. 141-186 | DOI
[8] Paracontrolled distributions and the 3-dimensional stochastic quantization equation (2013) (https://arxiv.org/abs/1310.6869v1)
[9] Renormalization fixed point of the KPZ universality class, J. Stat. Phys., Volume 160 (2015) no. 4, pp. 815-834 | DOI | Zbl
[10] Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields, Volume 122 (2002) no. 1, pp. 108-140 | DOI | Zbl
[11] Strong solutions to the stochastic quantization equations, Ann. Probab., Volume 31 (2003) no. 4, pp. 1900-1916 | DOI | MR | Zbl
[12] Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992, xviii+454 pages | DOI | MR | Zbl
[13] The field theory in a finite volume, Commun. Math. Phys., Volume 37 (1974) no. 2, pp. 93-120 | DOI
[14] Time dependent critical fluctuations of a one-dimensional local mean field model, Probab. Theory Relat. Fields, Volume 103 (1995) no. 3, pp. 381-407 | DOI | MR | Zbl
[15] A course on rough paths, Universitext, Springer, 2014, xiv+251 pages | Zbl
[16] On the triviality of theories and the approach to the critical-point in D-dimensions, Nuclear Physics B, Volume 200 (1982) no. 2, pp. 281-296 | DOI
[17] Random motion of strings and related stochastic evolution equations, Nagoya Math. J., Volume 89 (1983), pp. 129-193 | DOI | Zbl
[18] Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic partial differential equations: six perspectives (Mathematical Surveys and Monographs), Volume 64, American Mathematical Society, 1999, pp. 107-152 | DOI | MR | Zbl
[19] Quantum physics. A functional integral point of view, Springer, 1981, xx+417 pages | Zbl
[20] The Wightman axioms and particle structure in the P quantum field model, Ann. Math., Volume 100 (1974) no. 3, pp. 585-632 | DOI
[21] Phase transitions for quantum fields, Commun. Math. Phys., Volume 45 (1975) no. 3, pp. 203-216 | DOI | Zbl
[22] Controlling rough paths, J. Funct. Anal., Volume 216 (2004) no. 1, pp. 86-140 | DOI | MR | Zbl
[23] Paracontrolled distributions and singular PDEs, Forum Math. Pi, Volume 3 (2015) (Article ID e6, 75 p.) | DOI | Zbl
[24] An Introduction to Stochastic PDEs (2009) (https://arxiv.org/abs/0907.4178)
[25] Solving the KPZ equation, Ann. Math., Volume 178 (2013) no. 2, pp. 559-664 | DOI | Zbl
[26] Singular Stochastic PDES (2014) (https://arxiv.org/abs/1403.6353)
[27] A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269-504 | DOI | Zbl
[28] Introduction to regularity structures, Braz. J. Probab. Stat., Volume 29 (2015) no. 2, pp. 175-210 | DOI | Zbl
[29] Multiplicative stochastic heat equations on the whole space (2015) (https://arxiv.org/abs/1504.07162, to appear in J. Eur. Math. Soc.)
[30] A Wong-Zakai theorem for Stochastic PDEs, J. Math. Soc. Japan, Volume 67 (2015) no. 4, pp. 1551-1604 | DOI | Zbl
[31] Triviality of the 2D stochastic Allen-Cahn equation, Electron. J. Probab, Volume 17 (2012) no. 39, pp. 1-14 | Zbl
[32] Dynamic Scaling of Growing Interfaces, Phys. Rev. Lett., Volume 56 (1986) no. 9, pp. 889-892 | DOI | Zbl
[33] Numerical solution of stochastic differential equations, Applications of Mathematics, 23, Springer, 1992, xxxvi+632 pages | DOI | MR | Zbl
[34] Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, 12, American Mathematical Society, 1996, xii+164 pages | Zbl
[35] Renormalization Group and Stochastic PDEs, Ann. Henri Poincaré, Volume 17 (2015) no. 3, pp. 1-39 | DOI | Zbl
[36] Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | DOI | MR | Zbl
[37] Convergence of the two-dimensional dynamic Ising-Kac model to , Commun. Pure Appl. Math., Volume 70 (2017) no. 4, pp. 717-812 | DOI | Zbl
[38] Global well-posedness of the dynamic model in the plane, Ann. Probab., Volume 45 (2017) no. 4, pp. 2398-2476 | DOI | Zbl
[39] Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 7, pp. 1687-1759 | DOI | MR | Zbl
[40] The Malliavin calculus and related topics, Probability and Its Applications, Springer, 2006, xiv+382 pages | Zbl
[41] On Ising’s model of ferromagnetism, Proc. Camb. Philos. Soc., Volume 32 (1936), pp. 477-481 | DOI | Zbl
[42] A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, 1905, Springer, Berlin, 2007, vi+144 pages | MR | Zbl
[43] The one-dimensional KPZ equation and its universality class, J. Stat. Phys., Volume 160 (2015) no. 4, pp. 965-984 | DOI | Zbl
[44] One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality, Phys. Rev. Lett., Volume 104 (2010) no. 23 (Article ID 230602) | DOI
[45] Universal Fluctuations of Growing Interfaces: Evidence in Turbulent Liquid Crystals, Phys. Rev. Lett., Volume 104 (2010) no. 23 http://link.aps.org/doi/10.1103/PhysRevLett.104.230601 (Article ID 230601) | DOI
[46] On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Stat., Volume 36 (1965), pp. 1560-1564 | DOI | MR | Zbl
[47] On the relation between ordinary and stochastic differential equations, Int. J. Eng. Sci., Volume 3 (1965), pp. 213-229 | DOI | MR | Zbl
Cited by Sources: