Ces notes s’appuient sur un cours donné par l’auteur à l’université de Toulouse en février 2014. Elles sont entièrement consacrées au problème de Cauchy et au comportement en temps grands des solutions des équations de Navier–Stokes incompressibles à deux dimensions, dans le cas particulier où le domaine occupé par le fluide est le plan tout entier et où le champ de vitesse est seulement supposé borné. Dans ce contexte, il n’est pas difficile de montrer que le problème est localement bien posé [18], et des estimations a priori sur le tourbillon impliquent que toutes les solutions sont globales et que leur croissance temporelle est au plus exponentielle [19, 39]. En outre, comme l’a récemment montré S. Zelik, on peut utiliser des estimations d’énergie localisées pour obtenir un contrôle beaucoup plus précis sur le champ de vitesse dans l’espace d’énergie uniformément local [45]. Le but de ces notes est de présenter, de façon pédagogique et indépendante, une version simplifiée et optimisée de l’argument de Zelik qui, combinée avec une nouvelle formulation de la loi de Biot–Savart pour des tourbillons bornés, permet de montrer que la croissance temporelle du champ de vitesse est au plus linéaire. Ces résultats sont établis sans utiliser la dissipation d’énergie due à la viscosité, et restent donc valables pour les solutions dites « de Serfati » des équations d’Euler en dimension deux [2]. Dans le cas visqueux, un travail récent de S. Slijepčević et de l’auteur montre que toutes les solutions demeurent uniformément bornées si le champ de vitesse et la pression sont périodiques dans une direction donnée du plan [15, 16].
These notes are based on a series of lectures delivered by the author at the University of Toulouse in February 2014. They are entirely devoted to the initial value problem and the long-time behavior of solutions for the two-dimensional incompressible Navier–Stokes equations, in the particular case where the domain occupied by the fluid is the whole plane and the velocity field is only assumed to be bounded. In this context, local well-posedness is not difficult to establish [18], and a priori estimates on the vorticity distribution imply that all solutions are global and grow at most exponentially in time [19, 39]. Moreover, as was recently shown by S. Zelik, localized energy estimates can be used to obtain a much better control on the uniformly local energy norm of the velocity field [45]. The aim of these notes is to present, in an explanatory and self-contained way, a simplified and optimized version of Zelik’s argument which, in combination with a new formulation of the Biot–Savart law for bounded vorticities, allows one to show that the norm of the velocity field grows at most linearly in time. The results do not rely on the viscous dissipation, and remain therefore valid for the so-called “Serfati solutions” of the two-dimensional Euler equations [2]. In the viscous case, a recent work by S. Slijepčević and the author shows that all solutions stay uniformly bounded if the velocity field and the pressure are periodic in a given space direction [15, 16].
Thierry Gallay 1
@article{AFST_2017_6_26_4_979_0, author = {Thierry Gallay}, title = {Infinite energy solutions of the two-dimensional {Navier{\textendash}Stokes} equations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {979--1027}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {4}, year = {2017}, doi = {10.5802/afst.1558}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1558/} }
TY - JOUR AU - Thierry Gallay TI - Infinite energy solutions of the two-dimensional Navier–Stokes equations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 979 EP - 1027 VL - 26 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1558/ DO - 10.5802/afst.1558 LA - en ID - AFST_2017_6_26_4_979_0 ER -
%0 Journal Article %A Thierry Gallay %T Infinite energy solutions of the two-dimensional Navier–Stokes equations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 979-1027 %V 26 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1558/ %R 10.5802/afst.1558 %G en %F AFST_2017_6_26_4_979_0
Thierry Gallay. Infinite energy solutions of the two-dimensional Navier–Stokes equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 4, pp. 979-1027. doi : 10.5802/afst.1558. https://afst.centre-mersenne.org/articles/10.5802/afst.1558/
[1] Dynamical properties of spatially non-decaying 2D Navier-Stokes flows with Kolmogorov forcing in an infinite strip, J. Math. Fluid Mech., Volume 7 (2005), p. S51-S67 | DOI | Zbl
[2] Serfati solutions to the 2D Euler equations on exterior domains, J. Differ. Equations, Volume 259 (2015) no. 9, pp. 4509-4560 | DOI | Zbl
[3] Linear parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci., Volume 14 (2004) no. 2, pp. 253-293 | DOI | Zbl
[4] Infinite-energy solutions for dissipative Euler equations in , J. Math. Fluid Mech., Volume 17 (2015) no. 3, pp. 513-532 | DOI | Zbl
[5] A global existence result for the Navier-Stokes equation in the plane (1994) (unpublished manuscript)
[6] Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, 1988, ix+190 pages | Zbl
[7] Vanishing viscosity in the plane for nondecaying velocity and vorticity, SIAM J. Math. Anal., Volume 41 (2009) no. 2, pp. 495-510 | DOI | Zbl
[8] The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Commun. Pure Appl. Math., Volume 54 (2001) no. 6, pp. 625-688 | DOI | Zbl
[9] One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, 2000, xxi+586 pages | Zbl
[10] Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998, xvii+662 pages | Zbl
[11] Bounded, locally compact global attractors for semilinear damped wave equations on , Differ. Integral Equ., Volume 9 (1996) no. 5, pp. 1147-1156 | Zbl
[12] On the Navier-Stokes initial value problem. I., Arch. Ration. Mech. Anal., Volume 16 (1964), pp. 269-315 | DOI | Zbl
[13] An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, Springer Monographs in Mathematics, Springer, 2011, xiv+1018 pages | Zbl
[14] Energy flow in formally gradient partial differential equations on unbounded domains, J. Dyn. Differ. Equations, Volume 13 (2001) no. 4, pp. 757-789 | DOI | Zbl
[15] Energy bounds for the two-dimensional Navier-Stokes equations in an infinite cylinder, Commun. Partial Differ. Equations, Volume 39 (2014) no. 9, pp. 1741-1769 | DOI | Zbl
[16] Uniform boundedness and long-time asymptotics for the two-dimensional Navier-Stokes equations in an infinite cylinder, J. Math. Fluid Mech., Volume 17 (2015) no. 1, pp. 23-46 | DOI | Zbl
[17] Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Commun. Math. Phys., Volume 255 (2005) no. 1, pp. 97-129 | DOI | Zbl
[18] On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Advances in fluid dynamics (Quaderni di Matematica.), Volume 4, Aracne, 1999, pp. 27-68 | Zbl
[19] Global existence of two dimensional Navier-Stokes flow with non-decaying initial velocity, J. Math. Fluid Mech., Volume 3 (2001) no. 3, pp. 302-315 | DOI | Zbl
[20] The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, I: Compactness methods, Physica D, Volume 95 (1996) no. 2-4, pp. 191-228 | DOI | Zbl
[21] Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, 840, Springer, 1981, iv+348 pages | Zbl
[22] The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 181-205 | DOI | Zbl
[23] A characterization at infinity of bounded vorticity, bounded velocity solutions to the 2D Euler equations, Indiana Univ. Math. J., Volume 64 (2015) no. 6, pp. 1643-1666 | DOI | Zbl
[24] Two-dimensional Navier-Stokes flow in unbounded domains, Math. Ann., Volume 297 (1993) no. 1, pp. 1-31 | DOI | Zbl
[25] Solution “in the large” of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Commun. Pure Appl. Math., Volume 12 (1959), pp. 427-433 | DOI | Zbl
[26] Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl., Volume 12 (1933), pp. 1-82 | Zbl
[27] Essai sur les mouvements plans d’un fluide visqueux que limitent des parois, J. Math. Pures Appl., Volume 13 (1934), pp. 331-418 | Zbl
[28] Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 1996, 278 pages | Zbl
[29] Mathematical topics in fluid mechanics. Vol. 1. Incompressible models, Oxford Lecture Series in Mathematics and its Applications, 3, Clarendon Press, 1996, xiv+237 pages | Zbl
[30] The Navier-Stokes equations with initial data in uniformly local spaces, Differ. Integral Equ., Volume 19 (2006) no. 4, pp. 369-400 | Zbl
[31] Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002, xii+545 pages | Zbl
[32] Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2), Volume 36 (1984), pp. 623-646 | DOI | Zbl
[33] Ondelettes et opérateurs. II. Opérateurs de Calderón-Zygmund, Actualités Mathématiques, Hermann, 1990 | Zbl
[34] Attractors for modulation equations on unbounded domains — existence and comparison, Nonlinearity, Volume 8 (1995) no. 5, pp. 743-768 | DOI | Zbl
[35] Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer, 1983, viii+279 pages | Zbl
[36] Maximum principles in differential equations, Prentice-Hall Partial Differential Equations Series, Prentice-Hall, 1967, x+261 pages | Zbl
[37] Methods of modern mathematical physics. I. Functional analysis, Academic Press, 1972, xvii+325 pages | Zbl
[38] Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, 1975, xv+361 pages | Zbl
[39] A remark on solutions to the 2-D Navier-Stokes equations, J. Math. Fluid Mech., Volume 9 (2007) no. 4, pp. 533-542 | DOI | Zbl
[40] Large time behaviour of solutions to the Navier-Stokes equations, Commun. Partial Differ. Equations, Volume 11 (1986), pp. 733-763 | DOI | Zbl
[41] Solutions en temps, -log Lipschitz bornées en espace et équation d’Euler, C. R. Acad. Sci., Paris, Volume 320 (1995) no. 5, pp. 555-558 | Zbl
[42] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiii+695 pages | Zbl
[43] Navier-Stokes equations. Theory and numerical analysis., Studies in Mathematics and its Applications, 2, North-Holland, 1984, xii+526 pages | Zbl
[44] Decay results for weak solutions of the Navier-Stokes equations on , J. Lond. Math. Soc., Volume 35 (1987), pp. 303-313 | DOI | Zbl
[45] Infinite energy solutions for damped Navier-Stokes equations in , J. Math. Fluid Mech., Volume 15 (2013) no. 4, pp. 717-745 | DOI | Zbl
Cité par Sources :