Ces notes s’appuient sur un cours donné par l’auteur à l’université de Toulouse en février 2014. Elles sont entièrement consacrées au problème de Cauchy et au comportement en temps grands des solutions des équations de Navier–Stokes incompressibles à deux dimensions, dans le cas particulier où le domaine occupé par le fluide est le plan
These notes are based on a series of lectures delivered by the author at the University of Toulouse in February 2014. They are entirely devoted to the initial value problem and the long-time behavior of solutions for the two-dimensional incompressible Navier–Stokes equations, in the particular case where the domain occupied by the fluid is the whole plane
Thierry Gallay 1

@article{AFST_2017_6_26_4_979_0, author = {Thierry Gallay}, title = {Infinite energy solutions of the two-dimensional {Navier{\textendash}Stokes} equations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {979--1027}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {4}, year = {2017}, doi = {10.5802/afst.1558}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1558/} }
TY - JOUR AU - Thierry Gallay TI - Infinite energy solutions of the two-dimensional Navier–Stokes equations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 979 EP - 1027 VL - 26 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1558/ DO - 10.5802/afst.1558 LA - en ID - AFST_2017_6_26_4_979_0 ER -
%0 Journal Article %A Thierry Gallay %T Infinite energy solutions of the two-dimensional Navier–Stokes equations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 979-1027 %V 26 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1558/ %R 10.5802/afst.1558 %G en %F AFST_2017_6_26_4_979_0
Thierry Gallay. Infinite energy solutions of the two-dimensional Navier–Stokes equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 4, pp. 979-1027. doi : 10.5802/afst.1558. https://afst.centre-mersenne.org/articles/10.5802/afst.1558/
[1] Dynamical properties of spatially non-decaying 2D Navier-Stokes flows with Kolmogorov forcing in an infinite strip, J. Math. Fluid Mech., Volume 7 (2005), p. S51-S67 | DOI | Zbl
[2] Serfati solutions to the 2D Euler equations on exterior domains, J. Differ. Equations, Volume 259 (2015) no. 9, pp. 4509-4560 | DOI | Zbl
[3] Linear parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci., Volume 14 (2004) no. 2, pp. 253-293 | DOI | Zbl
[4] Infinite-energy solutions for dissipative Euler equations in
[5] A global existence result for the Navier-Stokes equation in the plane (1994) (unpublished manuscript)
[6] Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, 1988, ix+190 pages | Zbl
[7] Vanishing viscosity in the plane for nondecaying velocity and vorticity, SIAM J. Math. Anal., Volume 41 (2009) no. 2, pp. 495-510 | DOI | Zbl
[8] The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Commun. Pure Appl. Math., Volume 54 (2001) no. 6, pp. 625-688 | DOI | Zbl
[9] One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, 2000, xxi+586 pages | Zbl
[10] Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998, xvii+662 pages | Zbl
[11] Bounded, locally compact global attractors for semilinear damped wave equations on
[12] On the Navier-Stokes initial value problem. I., Arch. Ration. Mech. Anal., Volume 16 (1964), pp. 269-315 | DOI | Zbl
[13] An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, Springer Monographs in Mathematics, Springer, 2011, xiv+1018 pages | Zbl
[14] Energy flow in formally gradient partial differential equations on unbounded domains, J. Dyn. Differ. Equations, Volume 13 (2001) no. 4, pp. 757-789 | DOI | Zbl
[15] Energy bounds for the two-dimensional Navier-Stokes equations in an infinite cylinder, Commun. Partial Differ. Equations, Volume 39 (2014) no. 9, pp. 1741-1769 | DOI | Zbl
[16] Uniform boundedness and long-time asymptotics for the two-dimensional Navier-Stokes equations in an infinite cylinder, J. Math. Fluid Mech., Volume 17 (2015) no. 1, pp. 23-46 | DOI | Zbl
[17] Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Commun. Math. Phys., Volume 255 (2005) no. 1, pp. 97-129 | DOI | Zbl
[18] On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Advances in fluid dynamics (Quaderni di Matematica.), Volume 4, Aracne, 1999, pp. 27-68 | Zbl
[19] Global existence of two dimensional Navier-Stokes flow with non-decaying initial velocity, J. Math. Fluid Mech., Volume 3 (2001) no. 3, pp. 302-315 | DOI | Zbl
[20] The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, I: Compactness methods, Physica D, Volume 95 (1996) no. 2-4, pp. 191-228 | DOI | Zbl
[21] Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, 840, Springer, 1981, iv+348 pages | Zbl
[22] The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 181-205 | DOI | Zbl
[23] A characterization at infinity of bounded vorticity, bounded velocity solutions to the 2D Euler equations, Indiana Univ. Math. J., Volume 64 (2015) no. 6, pp. 1643-1666 | DOI | Zbl
[24] Two-dimensional Navier-Stokes flow in unbounded domains, Math. Ann., Volume 297 (1993) no. 1, pp. 1-31 | DOI | Zbl
[25] Solution “in the large” of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Commun. Pure Appl. Math., Volume 12 (1959), pp. 427-433 | DOI | Zbl
[26] Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl., Volume 12 (1933), pp. 1-82 | Zbl
[27] Essai sur les mouvements plans d’un fluide visqueux que limitent des parois, J. Math. Pures Appl., Volume 13 (1934), pp. 331-418 | Zbl
[28] Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 1996, 278 pages | Zbl
[29] Mathematical topics in fluid mechanics. Vol. 1. Incompressible models, Oxford Lecture Series in Mathematics and its Applications, 3, Clarendon Press, 1996, xiv+237 pages | Zbl
[30] The Navier-Stokes equations with initial data in uniformly local
[31] Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002, xii+545 pages | Zbl
[32] Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2), Volume 36 (1984), pp. 623-646 | DOI | Zbl
[33] Ondelettes et opérateurs. II. Opérateurs de Calderón-Zygmund, Actualités Mathématiques, Hermann, 1990 | Zbl
[34] Attractors for modulation equations on unbounded domains — existence and comparison, Nonlinearity, Volume 8 (1995) no. 5, pp. 743-768 | DOI | Zbl
[35] Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer, 1983, viii+279 pages | Zbl
[36] Maximum principles in differential equations, Prentice-Hall Partial Differential Equations Series, Prentice-Hall, 1967, x+261 pages | Zbl
[37] Methods of modern mathematical physics. I. Functional analysis, Academic Press, 1972, xvii+325 pages | Zbl
[38] Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, 1975, xv+361 pages | Zbl
[39] A remark on
[40] Large time behaviour of solutions to the Navier-Stokes equations, Commun. Partial Differ. Equations, Volume 11 (1986), pp. 733-763 | DOI | Zbl
[41] Solutions
[42] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiii+695 pages | Zbl
[43] Navier-Stokes equations. Theory and numerical analysis., Studies in Mathematics and its Applications, 2, North-Holland, 1984, xii+526 pages | Zbl
[44] Decay results for weak solutions of the Navier-Stokes equations on
[45] Infinite energy solutions for damped Navier-Stokes equations in
- Bounded solutions in incompressible hydrodynamics, Journal of Functional Analysis, Volume 286 (2024) no. 5, p. 110290 | DOI:10.1016/j.jfa.2023.110290
- Contour Dynamics and Global Regularity for Periodic Vortex Patches and Layers, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 2, p. 2286 | DOI:10.1137/22m1525818
- On the Local Pressure Expansion for the Navier–Stokes Equations, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 1 | DOI:10.1007/s00021-021-00637-4
- On the large time L∞-estimates of the Stokes semigroup in two-dimensional exterior domains, Journal of Differential Equations, Volume 300 (2021), p. 337 | DOI:10.1016/j.jde.2021.08.007
- Vanishing viscosity limits for axisymmetric flows with boundary, Journal de Mathématiques Pures et Appliquées, Volume 137 (2020), p. 1 | DOI:10.1016/j.matpur.2020.01.005
Cité par 5 documents. Sources : Crossref