We provide stacky generalizations of classical gauge-theoretic results inspired by Donaldson, the Uhlenbeck–Yau theorem and variants due to Bando and his collaborators. Moreover, we show an application of this machinery in the study of ALE spaces.
Nous donnons une généralisation champêtre de résultats classiques de théorie de jauge, comme la caractérisation par Donaldson des instantons sur en termes algébro-géométriques, le théorème de Uhlenbeck–Yau et diverses variantes dûes à Bando et ses collaborateurs. Nous appliquons cette machinerie à la classification des instantons sur certains espaces ALE.
Accepted:
Published online:
DOI: 10.5802/afst.1579
Philippe Eyssidieux 1; Francesco Sala 2
@article{AFST_2018_6_27_3_599_0, author = {Philippe Eyssidieux and Francesco Sala}, title = {Instantons and framed sheaves on {K\"ahler} {Deligne{\textendash}Mumford} stacks}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {599--628}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {3}, year = {2018}, doi = {10.5802/afst.1579}, zbl = {06979712}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1579/} }
TY - JOUR AU - Philippe Eyssidieux AU - Francesco Sala TI - Instantons and framed sheaves on Kähler Deligne–Mumford stacks JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 599 EP - 628 VL - 27 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1579/ DO - 10.5802/afst.1579 LA - en ID - AFST_2018_6_27_3_599_0 ER -
%0 Journal Article %A Philippe Eyssidieux %A Francesco Sala %T Instantons and framed sheaves on Kähler Deligne–Mumford stacks %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 599-628 %V 27 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1579/ %R 10.5802/afst.1579 %G en %F AFST_2018_6_27_3_599_0
Philippe Eyssidieux; Francesco Sala. Instantons and framed sheaves on Kähler Deligne–Mumford stacks. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 3, pp. 599-628. doi : 10.5802/afst.1579. https://afst.centre-mersenne.org/articles/10.5802/afst.1579/
[1] Construction of instantons, Phys. Lett. A, Volume 65 (1978) no. 3, pp. 185-187 | DOI | MR | Zbl
[2] Einstein-Hermitian metrics on non-compact Kähler manifolds, Einstein metrics and Yang-Mills connections (Lecture Notes in Pure and Applied Mathematics), Volume 145, Marcel Dekker, 1993, pp. 27-33 | MR | Zbl
[3] Cohomology of stacks, School and conference on intersection theory and moduli (ICTP Lecture Notes), Volume 19, Abdus Salam International Centre for Theoretical Physics, 2004, vii+327 pages | Zbl
[4] Algebraic stacks (2015) (http://www.math.uzh.ch/ws0607/mat513)
[5] String topology for stacks, Astérisque, 343, Société Mathématique de France, 2012, xiv+169 pages | Zbl
[6] Uniformization of Deligne-Mumford curves, J. Reine Angew. Math., Volume 599 (2006), pp. 111-153 | MR | Zbl
[7] Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces, Adv. Math., Volume 288 (2016), pp. 1175-1308 | DOI | MR | Zbl
[8] Framed sheaves on projective stacks, Adv. Math., Volume 272 (2015), pp. 20-95 | DOI | MR | Zbl
[9] Instantons on , J. Differ. Geom., Volume 37 (1993) no. 3, p. 669-387 | DOI | MR
[10] Using stacks to impose tangency conditions on curves, Am. J. Math., Volume 129 (2007) no. 2, pp. 405-427 | DOI | MR | Zbl
[11] Representation theory and complex geometry, Birkhäuser, 2010, x+495 pages | Zbl
[12] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011, xxiv+841 pages | MR | Zbl
[13] Cohomology of -convex spaces in top degrees, Math. Z., Volume 204 (1990) no. 2, pp. 283-295 | DOI | MR | Zbl
[14] Complex analytic and differential geometry (2012) (OpenContent Book available at https://www-fourier.ujf.grenoble.fr/~demailly/manuscripts/agbook.pdf)
[15] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., Volume 159 (2004) no. 3, pp. 1247-1274 | DOI | Zbl
[16] Instantons and geometric invariant theory, Commun. Math. Phys., Volume 93 (1984), pp. 453-460 | DOI | MR | Zbl
[17] Asymptotic expansion of the heat kernel for orbifolds, Mich. Math. J., Volume 56 (2008) no. 1, pp. 205-238 | DOI | MR | Zbl
[18] Singular Kähler-Einstein metrics, J. Am. Math. Soc., Volume 22 (2009) no. 3, pp. 607-639 | DOI | Zbl
[19] Smooth toric Deligne-Mumford stacks, J. Reine Angew. Math., Volume 648 (2010), pp. 201-244 | MR | Zbl
[20] Lectures on Nakajima’s quiver varieties, Geometric methods in representation theory. I (Séminaires et Congrès), Volume 24 (2012), pp. 145-219 | MR | Zbl
[21] Construction géométrique de la correspondance de McKay, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983), pp. 409-449 | DOI | Numdam | Zbl
[22] Closed geodesics on orbifolds, Topology, Volume 45 (2006) no. 3, pp. 611-641 | DOI | MR | Zbl
[23] General Existence Theorems in Moduli Theory, Stanford University (USA) (2011) (Ph. D. Thesis)
[24] Quotients by groupoids, Ann. Math., Volume 145 (1997) no. 1, pp. 193-213 | DOI | MR | Zbl
[25] Study of conformally self-dual 4-manifolds: instantons and holomorphic bundles on the blown-up plane, Worcester College, University of Oxford (UK) (1989) (Ph. D. Thesis)
[26] Einstein–Kähler -metrics on open Satake -surfaces with isolated quotient singularities, Math. Ann., Volume 272 (1985), pp. 385-398 | DOI | Zbl
[27] On the geometry of Deligne-Mumford stacks, Algebraic geometry, Seattle 2005 (Proceedings of Symposia in Pure Mathematics), Volume 80, American Mathematical Society, 2009, pp. 259-271 | MR | Zbl
[28] The construction of ALE spaces as hyper-Kähler quotients, J. Differ. Geom., Volume 29 (1989) no. 3, pp. 665-683 | DOI | Zbl
[29] Yang-Mills instantons on ALE gravitational instantons, Math. Ann., Volume 288 (1990) no. 2, pp. 263-307 | DOI | MR | Zbl
[30] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete 3., 39, Springer, 2000, xi++208 pages | Zbl
[31] Chern-Weil map for principal bundles over groupoids, Math. Z., Volume 255 (2007) no. 3, pp. 451-491 | DOI | MR | Zbl
[32] Orbifolds as stacks?, Enseign. Math., Volume 56 (2010) no. 3-4, pp. 315-363 | DOI | MR | Zbl
[33] Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Lett., Volume 12 (2005) no. 2-3, pp. 207-217 | DOI | MR | Zbl
[34] Orbifolds as groupoids: an introduction, Orbifolds in mathematics and physics (Contemporary Mathematics), Volume 310, American Mathematical Society, 2002, pp. 205-222 | DOI | MR | Zbl
[35] Moduli spaces of anti-self-dual connections on ALE gravitational instantons, Invent. Math., Volume 102 (1990) no. 2, 267 pages | MR | Zbl
[36] Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., Volume 76 (1994) no. 2, pp. 365-416 | MR | Zbl
[37] Lectures on Hilbert schemes of points on surfaces, University Lecture Series, 18, American Mathematical Society, 1999, xi+132 pages | MR | Zbl
[38] Sheaves on ALE spaces and quiver varieties, Mosc. Math. J., Volume 7 (2007) no. 4, pp. 699-722 | DOI | MR | Zbl
[39] Moduli spaces of semistable sheaves on projective Deligne-Mumford stacks (2009) (https://arxiv.org/abs/0811.1949)
[40] Foundations of Topological Stacks I (2005) (https://arxiv.org/abs/math/0503247)
[41] Etendues and stacks as bicategories of fractions, Compos. Math., Volume 102 (1996) no. 3, pp. 243-303 | Numdam | MR | Zbl
[42] Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics, J. Differ. Geom., Volume 88 (2011) no. 1, pp. 109-159 | DOI | Zbl
[43] Variétés carquois de Nakajima (d’après Nakajima, Lusztig, Varagnolo, Vasserot, Crawley-Boevey, et al.), Bourbaki seminar. Volume 2006/2007 (Astérisque), Volume 317 (2008), p. 395-344 | Numdam | Zbl
[44] Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, K-Theory, Volume 18 (1999) no. 1, pp. 33-76 | DOI | Zbl
[45] On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math., Volume 39 (1986), p. S257-S293 | DOI | MR
[46] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., Volume 97 (1989) no. 3, pp. 613-670 | DOI | MR | Zbl
[47] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl
Cited by Sources: