We obtain Schauder estimates for a general class of linear integro-differential equations. The estimates are applied to a scalar non-local Burgers equation and complete the global well-posedness results obtained in [6].
Nous obtenons des estimées de Schauder pour une classe générale d’équations linéaires intégro-différentielles. Ces estimées sont utilisées pour obtenir un résultat d’existence globale pour une équation scalaire de Burgers non-locale [6].
Accepted:
Published online:
DOI: 10.5802/afst.1581
Cyril Imbert 1; Tianling Jin 2; Roman Shvydkoy 3
@article{AFST_2018_6_27_4_667_0, author = {Cyril Imbert and Tianling Jin and Roman Shvydkoy}, title = {Schauder estimates for an integro-differential equation with applications to a nonlocal {Burgers} equation}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {667--677}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {4}, year = {2018}, doi = {10.5802/afst.1581}, mrnumber = {3884608}, zbl = {06984157}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1581/} }
TY - JOUR AU - Cyril Imbert AU - Tianling Jin AU - Roman Shvydkoy TI - Schauder estimates for an integro-differential equation with applications to a nonlocal Burgers equation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 667 EP - 677 VL - 27 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1581/ DO - 10.5802/afst.1581 LA - en ID - AFST_2018_6_27_4_667_0 ER -
%0 Journal Article %A Cyril Imbert %A Tianling Jin %A Roman Shvydkoy %T Schauder estimates for an integro-differential equation with applications to a nonlocal Burgers equation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 667-677 %V 27 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1581/ %R 10.5802/afst.1581 %G en %F AFST_2018_6_27_4_667_0
Cyril Imbert; Tianling Jin; Roman Shvydkoy. Schauder estimates for an integro-differential equation with applications to a nonlocal Burgers equation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 4, pp. 667-677. doi : 10.5802/afst.1581. https://afst.centre-mersenne.org/articles/10.5802/afst.1581/
[1] Regularity theory for parabolic nonlinear integral operators, J. Am. Math. Soc., Volume 24 (2011) no. 3, pp. 849-869 | DOI | MR | Zbl
[2] Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., Volume 62 (2009) no. 5, pp. 597-638 | DOI | MR | Zbl
[3] On Schauder estimates for a class of nonlocal fully nonlinear parabolic equations (2016) (https://arxiv.org/abs/1604.00101) | Zbl
[4] Local regularity for parabolic nonlocal operators, Commun. Partial Differ. Equations, Volume 38 (2013) no. 9, pp. 1539-1573 | DOI | MR | Zbl
[5] On the regularity of the minima of variational integrals, Acta Math., Volume 148 (1982), pp. 31-46 | DOI | MR | Zbl
[6] Global well-posedness of a non-local Burgers equation: The periodic case, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 4, pp. 723-758 | DOI | MR | Zbl
[7] Schauder estimates for solutions of linear parabolic integro-differential equations, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5977-5998 | MR | Zbl
[8] Schauder estimates for nonlocal fully nonlinear equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 5, pp. 1375-1407 | MR | Zbl
[9] Regularity for solutions of non local parabolic equations, Calc. Var. Partial Differ. Equ. (2014), pp. 1-2 | MR | Zbl
[10] Approximation des equations de navier-stokes préservant le changement d’échelle, Université d’Évry Val d’Essonne (France) (2010) (Ph. D. Thesis)
[11] A scaling and energy equality preserving approximation for the 3D Navier-Stokes equations in the finite energy case, Nonlinear Anal., Theory Methods Appl., Ser. A, Volume 74 (2011) no. 17, pp. 5902-5919 | DOI | MR | Zbl
[12] On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem, Potential Anal., Volume 40 (2014) no. 4, pp. 539-563 | DOI | Zbl
Cited by Sources: