There is an interesting potential theory associated to each degenerate elliptic, fully nonlinear equation . These include all the potential theories attached to calibrated geometries. This paper begins the study of tangents to the subsolutions in these theories, a topic inspired by the results of Kiselman in the classical plurisubharmonic case. Fundamental to this study is a new invariant of the equation, called the Riesz characteristic, which governs asymptotic structures. The existence of tangents to subsolutions is established in general, as is the existence of an upper semi-continuous density function. Two theorems establishing the strong uniqueness of tangents (which means tangents are always unique and are Riesz kernels) are proved. They cover all O-invariant convex cone equations and their complex and quaternionic analogues, with the exception of the homogeneous Monge–Ampère equations, where uniqueness fails. They also cover a large class of geometrically defined subequations which includes those coming from calibrations. A discreteness result for the sets where the density is is also established in any case where strong uniqueness holds. A further result (which is sharp) asserts the Hölder continuity of subsolutions when the Riesz characteristic satisfies . Many explicit examples are examined.
The second part of this paper [23] is devoted to the “geometric cases”. A Homogeneity Theorem and an additional Strong Uniqueness Theorem are proved, and the tangents in the Monge–Ampère cases are completely classified.
Il existe une théorie du potentiel intéressante associée à chaque équation, nonlinéaire et élliptique dégénérée, de la forme . Ceci inclut toutes les théories du potentiel associées aux calibrations. Cet article commence l’étude des tangents aux sous-solutions dans ces théories, un sujet inspiré par l’oeuvre de Kiselman dans le cas pluri-potentiel classique. Fondamentale à notre étude est une nouvelle invariante, la caractéristique de Riesz, qui gouverne les structures asymptotiques. L’existence de tangents aux sous-solutions est établie en général ; on démontre aussi l’existence générale d’une fonction de densité, semi-continue supérieurement. Deux théorèmes qui établissent l’unicité forte de tangents (i.e., tangents sont toujours unique et sont noyaux de Riesz) sont démontrés. Ils comprennent toutes les sous-équations qui sont des cones convexes et O-invariants, ainsi que leurs analogues complexes et quatérnioniques, avec l’exception de l’équation de Monge–Ampère, pour laquelle l’unicité forte ne tient pas. Ils s’appliquent aussi à une grande classe de sous-équations définies géométriquement. Parmi elles sont toutes celles qui proviennent de calibrations. Un résultat de finitude locale, pour les ensembles de densité , est établi dans chaque cas où régit l’unicité forte. Selon un autre résultat, quand la caractéristique de Riesz satisfait , alors toutes les functions sous-harmoniques sont Hölder-continues. On considère beaucoup d’exemples explicites.
La deuxième partie de cet article [23] concerne les “cas géométriques”. On y établit un Théorème d’Homogénéité et un Théorème d’Unicité Forte. Aussi, les espaces tangents pour les équations de Monge–Ampère (réelles, complexes et quaternioniques) sont classifiés complètement.
Accepted:
Published online:
DOI: 10.5802/afst.1583
F. Reese Harvey 1; H. Blaine Lawson 2
@article{AFST_2018_6_27_4_777_0, author = {F. Reese Harvey and H. Blaine Lawson}, title = {Tangents to subsolutions: existence and uniqueness, {Part~I}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {777--848}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {4}, year = {2018}, doi = {10.5802/afst.1583}, mrnumber = {3884610}, zbl = {1412.35140}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1583/} }
TY - JOUR AU - F. Reese Harvey AU - H. Blaine Lawson TI - Tangents to subsolutions: existence and uniqueness, Part I JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 777 EP - 848 VL - 27 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1583/ DO - 10.5802/afst.1583 LA - en ID - AFST_2018_6_27_4_777_0 ER -
%0 Journal Article %A F. Reese Harvey %A H. Blaine Lawson %T Tangents to subsolutions: existence and uniqueness, Part I %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 777-848 %V 27 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1583/ %R 10.5802/afst.1583 %G en %F AFST_2018_6_27_4_777_0
F. Reese Harvey; H. Blaine Lawson. Tangents to subsolutions: existence and uniqueness, Part I. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 4, pp. 777-848. doi : 10.5802/afst.1583. https://afst.centre-mersenne.org/articles/10.5802/afst.1583/
[1] Fundamental solutions of homogeneous fully nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 64 (2011) no. 6, pp. 737-777 | MR | Zbl
[2] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 | Zbl
[3] Algebraic values of meromorphic maps, Invent. Math., Volume 10 (1970), pp. 267-287 addendum in ibid. 11 (1970), p. 163-166 | DOI | MR
[4] Fully Nonlinear Elliptic Equations, Colloquium Publications, 43, American Mathematical Society, 1995, v+104 pages | MR | Zbl
[5] Viscosity solutions: a primer, Viscosity solutions and applications (Lecture Notes in Mathematics), Volume 1660, Springer, 1997, pp. 1-43 | DOI | MR | Zbl
[6] User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl
[7] Complex analytic and differential geometry (http://www-fourier.ujf-grenoble.fr/~demailly/documents.html)
[8] Regularity for fully nonlinear elliptic equations and motion by mean curvature, Viscosity solutions and applications (Lecture Notes in Mathematics), Volume 1660, Springer, 1997, pp. 97-133 | MR | Zbl
[9] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer, 1969, xiv+676 pages | MR | Zbl
[10] An inequality for hyperbolic polynomials, J. Math. Mech., Volume 8 (1959) no. 2, pp. 957-965 | MR | Zbl
[11] Removable singularities and structure theorems for positive currents, Partial differential equations (Proc. Sympos. Pure Math.), Volume 23 (1973), pp. 123-133 | Zbl
[12] Subequation characterizations of various classical functions (in preparation)
[13] Calibrated geometries, Acta Math., Volume 148 (1982), pp. 47-157 | DOI | MR | Zbl
[14] Dirichlet duality and the nonlinear Dirichlet problem, Commun. Pure Appl. Math., Volume 62 (2009) no. 3, pp. 396-443 | DOI | MR | Zbl
[15] Hyperbolic polynomials and the Dirichlet problem (2009) (https://arxiv.org/abs/0912.5220)
[16] An introduction to potential theory in calibrated geometry, Am. J. Math., Volume 131 (2009) no. 4, pp. 893-944 | DOI | MR | Zbl
[17] Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds, J. Differ. Geom., Volume 88 (2011) no. 3, pp. 395-482 | DOI | MR | Zbl
[18] Plurisubharmonicity in a general geometric context, Geometry and analysis, No. 1 (Advanced Lectures in Mathematics), Volume 17, International Press; Higher Education Press, 2011, pp. 363-401 | MR | Zbl
[19] The AE Theorem and addition theorems for quasi-convex functions (2013) (https://arxiv.org/abs/1309.1770)
[20] The equivalence of viscosity and distributional subsolutions for convex subequations – the strong Bellman principle, Bull. Braz. Math. Soc., Volume 44 (2013) no. 4, pp. 621-652 | DOI | MR | Zbl
[21] Gårding’s theory of hyperbolic polynomials, Commun. Pure Appl. Math., Volume 66 (2013) no. 7, pp. 1102-1128 | DOI | Zbl
[22] -convexity, -plurisubharmonicity and the Levi problem, Indiana Univ. Math. J., Volume 62 (2013) no. 1, pp. 149-169 | DOI | MR | Zbl
[23] Tangents to subsolutions – existence and uniqueness, Part II (2014) (https://arxiv.org/abs/1408.5851) | Zbl
[24] The Dirichlet Problem with Prescribed Interior Singularities, Adv. Math., Volume 303 (2016), pp. 1319-1357 | MR | Zbl
[25] An Introduction to Complex Analysis in Several Variables, North-Holland Mathematical Library, 7, North-Holland, 1990, xii+254 pages | MR | Zbl
[26] Notions of Convexity, Progress in Mathematics, 127, Birkhäuser, 1994, viii+414 pages | MR | Zbl
[27] Limit sets of plurisubharmonic functions, Math. Scand., Volume 65 (1989) no. 2, pp. 308-320 | DOI | MR | Zbl
[28] On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s, Commun. Pure Appl. Math., Volume 42 (1989) no. 1, pp. 15-45 | DOI | MR | Zbl
[29] Tangents of plurisubharmonic functions, International Symposium in Memory of Hua Loo Keng, Vol. II (Beijing, 1988), Springer, 1991, pp. 157-167 | Zbl
[30] Plurisubharmonic functions and potential theory in several complex variables, Development of mathematics 1950-2000, Birkhäuser, 2000, pp. 655-714 | DOI | MR | Zbl
[31] Pluripotential theory, London Mathematical Society Monographs, New Series, 6, Clarendon Press, 1991, xiv+266 pages | MR | Zbl
[32] On the general notion of fully nonlinear second-order elliptic equations, Trans. Am. Math. Soc., Volume 347 (1995) no. 3, pp. 857-895 | DOI | MR
[33] Isolated singularities for fully nonlinear elliptic equations, J. Differ. Equations, Volume 177 (2001) no. 1, pp. 49-76 | DOI | MR | Zbl
[34] Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J., Volume 111 (2002) no. 1, pp. 1-49 | DOI | MR | Zbl
[35] Singularities of viscosity solutions of fully nonlinear elliptic equations, Viscosity Solutions of Differential Equations and Related Topics (RIMS Kôkyûroku), Volume 1287, Kyoto University, 2002, pp. 45-57 | MR
[36] Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, 180, Springer, 1972, x+424 pages | MR | Zbl
[37] -convex riemannian manifolds, Invent. Math., Volume 83 (1986), pp. 437-447 | MR | Zbl
[38] Growth properties of analytic and plurisubharmonic functions of finite order, Math. Scand., Volume 59 (1986) no. 2, pp. 235-304 | DOI | MR | Zbl
[39] Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Australian National University, 1983, vii+272 pages | MR | Zbl
[40] Analyticity of sets associated to Lelong numbers and the extension on closed positive currents, Invent. Math., Volume 27 (1974), pp. 53-156 | MR | Zbl
[41] Hölder gradient estimates for fully nonlinear equations, Proc. R. Soc. Edinb., Sect. A, Volume 108 (1988) no. 1-2, pp. 57-65 | DOI | Zbl
[42] Hessian measures. I, Topol. Methods Nonlinear Anal., Volume 10 (1997) no. 2, pp. 225-239 | DOI | MR | Zbl
[43] Hessian measures. II, Ann. Math., Volume 150 (1999) no. 2, pp. 579-604 | DOI | MR | Zbl
[44] Hessian measures. III, J. Funct. Anal., Volume 193 (2002) no. 1, pp. 1-23 | DOI | MR | Zbl
[45] Manifolds of partially positive curvature, Indiana Univ. Math. J., Volume 36 (1987) no. 3, pp. 523-548 | MR
Cited by Sources: