We classify products of symmetric powers of a Severi–Brauer variety, up to stable birational equivalence. The description also includes Grassmannians, flag varieties and moduli spaces of genus 0 stable maps.
Nous classons les produits de puissances symétriques d’une variété de Severi–Brauer, à équivalence birationnelle stable près. Notre classification concerne aussi les grassmanniennes, les variétés de drapeaux et les espaces de modules d’applications stables de genre .
Accepted:
Published online:
DOI: 10.5802/afst.1584
János Kollár 1
@article{AFST_2018_6_27_4_849_0, author = {J\'anos Koll\'ar}, title = {Symmetric powers of {Severi{\textendash}Brauer} varieties}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {849--862}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {4}, year = {2018}, doi = {10.5802/afst.1584}, zbl = {1423.14092}, mrnumber = {3884611}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1584/} }
TY - JOUR AU - János Kollár TI - Symmetric powers of Severi–Brauer varieties JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 849 EP - 862 VL - 27 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1584/ DO - 10.5802/afst.1584 LA - en ID - AFST_2018_6_27_4_849_0 ER -
%0 Journal Article %A János Kollár %T Symmetric powers of Severi–Brauer varieties %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 849-862 %V 27 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1584/ %R 10.5802/afst.1584 %G en %F AFST_2018_6_27_4_849_0
János Kollár. Symmetric powers of Severi–Brauer varieties. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 4, pp. 849-862. doi : 10.5802/afst.1584. https://afst.centre-mersenne.org/articles/10.5802/afst.1584/
[1] Moduli spaces for surfaces, Higher dimensional complex varieties (Trento, 1994) (1996), pp. 1-22 | Zbl
[2] Rational curves on varieties, Higher dimensional varieties and rational points (Budapest, 2001) (Bolyai Society Mathematical Studies), Volume 12, Springer, 2003, pp. 13-68 | DOI | MR | Zbl
[3] Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties (Trends in Mathematics), Birkhäuser, 2005, pp. 33-85 | DOI
[4] Rationality of fields of invariants, Algebraic geometry (Bowdoin, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46 (1985), pp. 3-16 | Zbl
[5] The ring of generic matrices, J. Algebra, Volume 258 (2002) no. 1, pp. 310-320 | DOI | MR | Zbl
[6] Notes on stable maps and quantum cohomology, Algebraic geometry (Santa Cruz 1995) (Proceedings of Symposia in Pure Mathematics), Volume 62 (1995), pp. 45-96 | Zbl
[7] Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, 101, Cambridge University Press, 2006, xi+343 pages | MR | Zbl
[8] La rationalité des schémas de Hilbert de courbes gauches rationnelles suivant Katsylo, Algebraic curves and projective geometry (Trento, 1988) (Lecture Notes in Mathematics), Volume 1389 (1988), pp. 87-90 | DOI | Zbl
[9] Methods of Algebraic Geometry. Vols. I–III., Cambridge University Press, 1947, 1952, 1954
[10] Products of Brauer-Severi surfaces, Proc. Am. Math. Soc., Volume 137 (2009) no. 1, pp. 45-50 | DOI | MR | Zbl
[11] Rationality of fields of invariants of reducible representations of the group , Vestn. Mosk. Univ., Volume 1984 (1984) no. 5, pp. 77-79 | MR | Zbl
[12] The connectedness of the moduli space of maps to homogeneous spaces, Symplectic geometry and mirror symmetry (Seoul, 2000), World Scientific, 2000, pp. 187-201 | Zbl
[13] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 32, Springer, 1996, viii+320 pages | MR | Zbl
[14] Conics in the Grothendieck ring, Adv. Math., Volume 198 (2005) no. 1, pp. 27-35 | DOI | MR | Zbl
[15] Severi–Brauer varieties; a geometric treatment (2016) (https://arxiv.org/abs/1606.04368)
[16] Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, 92, Cambridge University Press, 2004, vi+235 pages | MR | Zbl
[17] Zero cycles on homogeneous varieties, Adv. Math., Volume 223 (2010) no. 6, pp. 2022-2048 | DOI | MR | Zbl
[18] Severi–Brauer varieties and symmetric powers, Algebraic transformation groups and algebraic varieties (Encyclopaedia of Mathematical Sciences), Volume 132, Springer, 2090, pp. 59-70 | DOI | Zbl
[19] Flag varieties and Schubert calculus, Algebraic groups (Göttingen, 2007) (Mathematisches Institut. Seminare), Universitätsverlag Göttingen, 2007, pp. 73-86 | Zbl
[20] The field of multisymmetric functions, Proc. Am. Math. Soc., Volume 19 (1968), pp. 764-765 | MR | Zbl
[21] Foundations of algebraic geometry, American Mathematical Society Colloquium Publications, XXIX, American Mathematical Society, 1962, xx+363 pages | Zbl
Cited by Sources: