We review various contributions on the fundamental work of Lanford [21] deriving the Boltzmann equation from (reversible) hard-sphere dynamics in the low density limit.
We focus especially on the assumptions made on the initial data and on how they encode irreversibility. The impossibility to reverse time in the Boltzmann equation (expressed for instance by Boltzmann’s H-theorem) is related to the lack of convergence of higher order marginals on some singular sets. Explicit counterexamples single out the sets with vanishing measure where the initial data should converge in order to produce the Boltzmann dynamics.
Ce papier présente diverses contributions basées sur le travail fondamental de Lanford [21] qui a permis d’obtenir l’équation de Boltzmann à partir de la dynamique (réversible) des sphères dures dans la limite de densité faible.
On s’intéresse en particulier aux hypothèses sur la donnée initiale et sur la façon dont elles codent l’irréversibilité. On montre que l’impossibilité de renverser le sens du temps dans l’équation de Boltzmann (qui est exprimée notamment dans le théorème H) est liée à l’absence de convergence des marginales d’ordre supérieur sur des ensembles singuliers. Un contre exemple explicite permet de caractériser les ensembles, de mesure asymptotiquement nulle, où la donnée initiale doit converger pour obtenir la dynamique de Boltzmann.
Accepted:
Published online:
DOI: 10.5802/afst.1589
Thierry Bodineau 1; Isabelle Gallagher 2; Laure Saint-Raymond 3; Sergio Simonella 3
@article{AFST_2018_6_27_5_985_0, author = {Thierry Bodineau and Isabelle Gallagher and Laure Saint-Raymond and Sergio Simonella}, title = {One-sided convergence in the {Boltzmann{\textendash}Grad} limit}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {985--1022}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {5}, year = {2018}, doi = {10.5802/afst.1589}, mrnumber = {3919546}, zbl = {1416.35174}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1589/} }
TY - JOUR AU - Thierry Bodineau AU - Isabelle Gallagher AU - Laure Saint-Raymond AU - Sergio Simonella TI - One-sided convergence in the Boltzmann–Grad limit JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 985 EP - 1022 VL - 27 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1589/ DO - 10.5802/afst.1589 LA - en ID - AFST_2018_6_27_5_985_0 ER -
%0 Journal Article %A Thierry Bodineau %A Isabelle Gallagher %A Laure Saint-Raymond %A Sergio Simonella %T One-sided convergence in the Boltzmann–Grad limit %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 985-1022 %V 27 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1589/ %R 10.5802/afst.1589 %G en %F AFST_2018_6_27_5_985_0
Thierry Bodineau; Isabelle Gallagher; Laure Saint-Raymond; Sergio Simonella. One-sided convergence in the Boltzmann–Grad limit. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 5, pp. 985-1022. doi : 10.5802/afst.1589. https://afst.centre-mersenne.org/articles/10.5802/afst.1589/
[1] The Infinite Hard Sphere System, University of California (USA) (1975) (Ph. D. Thesis) | MR
[2] Global existence in for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation, J. Stat. Phys., Volume 59 (1990) no. 3-4, pp. 845-867 | DOI | MR | Zbl
[3] From Newton’s law to the linear Boltzmann equation without cut-off, Commun. Math. Phys., Volume 350 (2017) no. 3, pp. 1219-1274 | MR | Zbl
[4] Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970) no. 2, pp. 185-233 | DOI | Zbl
[5] Equilibrium time correlation functions in the low-density limit, J. Stat. Phys., Volume 22 (1980) no. 2, pp. 237-257 | DOI | MR
[6] Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation, Series on Advances in Mathematics for Applied Sciences, World Scientific, 1991, xii+207 pages | Zbl
[7] The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. Math., Volume 203 (2015) no. 2, pp. 1-61 | MR | Zbl
[8] From hard sphere dynamics to the Stokes-Fourier equations: an analysis of the Boltzmann-Grad limit, Ann. PDE, Volume 3 (2017) no. 1, 2, 118 pages (Art ID 2, 118 p.) | MR | Zbl
[9] Lectures on Gas Theory / Vorlesungen über Gastheorie (1896), University of California Press, 1964 (english translation by S. G. Brush)
[10] Further Studies on the Thermal Equilibrium of Gas Molecules (1872), The Kinetic Theory of Gases (History of Modern Physical Sciences), Volume 1, World Scientific, 2003, pp. 262-349 | DOI
[11] On the Boltzmann equation for rigid spheres, Transp. Theory Stat. Phys., Volume 2 (1972), pp. 211-225 | MR | Zbl
[12] Ludwig Boltzmann, The man who trusted atoms, Oxford University Press, 1998, xvi+359 pages | Zbl
[13] The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer, 1994, vii+347 pages | MR | Zbl
[14] The propagation of chaos for a rarefied gas of hard spheres in the whole space, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 2, pp. 885-952 | DOI | MR | Zbl
[15] From Newton to Boltzmann : the case of hard-spheres and short-range potentials, Zürich Lectures in Advanced Mathematics, European Mathematical Society, 2014, xii+137 pages | Zbl
[16] On the (Boltzmann) Entropy of Non-equilibrium Systems, Physica D, Volume 193 (2004) no. 1-4, pp. 53-66 | DOI | MR | Zbl
[17] Principles of the kinetic theory of gases, Thermodynamik der Gase (Handbuch der Physik), Volume 3, Springer, 1958, pp. 205-294 | DOI
[18] Symmetric measures on Cartesian products, Trans. Am. Math. Soc., Volume 80 (1955), pp. 470-501 | DOI | MR | Zbl
[19] BBGKY hierarchy for positive potentials, University of California (USA) (19785) (Ph. D. Thesis)
[20] Cluster expansions, Encyclopedia of Mathematical Physics, Elsevier, 2006, pp. 531-536 | DOI
[21] Time evolution of large classical systems, Dynamical systems, theory and applications (Lecture Notes in Physics), Volume 38, Springer, 1975, pp. 1-111 | DOI | MR | Zbl
[22] On a derivation of the Boltzmann equation (Astérisque), Volume 40, Société Mathématique de France, 1976, pp. 117-137 | Numdam | Zbl
[23] From Time-Symmetric Microscopic Dynamics to Time-Asymmetric Macroscopic Behavior: An Overview, Boltzmann’s legacy (ESI Lectures in Mathematics and Physics) (2007), pp. 63-89
[24] Anz. Kais. Akad. Wiss., Math. Naturwiss. Classe, 73 (1876), pp. 128-142
[25] Abstract cluster expansion with applications to statistical mechanical systems, J. Math. Phys., Volume 50 (2009) no. 5, 053509, 17 pages (Art. ID 053509, 17 p.) | MR | Zbl
[26] Cluster Expansion in the Canonical Ensemble, Commun. Math. Phys., Volume 316 (2012) no. 2, pp. 289-306 | DOI | MR | Zbl
[27] On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys., Volume 26 (2014) no. 2, 1450001, 64 pages (Art. ID 1450001, 64 p.) | MR | Zbl
[28] On the evolution of the empirical measure for the hard-sphere dynamics, Bull. Inst. Math., Acad. Sin., Volume 10 (2015) no. 2, pp. 171-204 | MR | Zbl
[29] The Boltzmann-Grad Limit of a Hard Sphere System: Analysis of the Correlation Error, Invent. Math., Volume 207 (2017) no. 3, pp. 1135-1237 | DOI | MR | Zbl
[30] Evolution of correlation functions in the hard sphere dynamics, J. Stat. Phys., Volume 155 (2014) no. 6, pp. 1191-1221 | DOI | MR | Zbl
[31] Boltzmann hierarchy and Boltzmann equation, Kinetic theories and the Boltzmann equation (Montecatini, 1981) (Lecture Notes in Mathematics), Volume 1048, Springer, 1984, pp. 207-220 | DOI | MR | Zbl
[32] Large scale dynamics of interacting particles, Texts and Monographs in Physics, 174, Springer, 1991, xi+342 pages | Zbl
[33] Loschmidt’s Reversibility Argument and the -Theorem, Pioneering Ideas for the Physical and Chemical Sciences, Springer, 1997, pp. 153-157 | DOI
[34] Cluster expansions and correlation functions, Mosc. Math. J., Volume 4 (2004) no. 2, pp. 511-522 | DOI | MR | Zbl
[35] The Boltzmann-Grad Limit and Cauchy-Kovalevskaya Theorem, Japan J. Ind. Appl. Math., Volume 18 (2001) no. 2, pp. 383-392 | DOI | MR | Zbl
Cited by Sources: