logo AFST

Geodesic intersections and isoxial Fuchsian groups.
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 3, pp. 471-489.

L’ensemble des axes d’éléments hyperboliques dans un groupe fuchsien dépend de la classe de commensurabilité du groupe. En effet, cet ensemble détermine la classe de commensurabilité pour les groupes du deuxième type, d’après G. Mess, et pour les groupes arithmétiques, d’après D. Long et A. Reid. Selon une veille conjecture, la classe de commensurabilité d’un groupe fuchsien non élémentaire est toujours déterminée par ses axes. Nous montrons ici que la conjecture est vraie pour presque tous les groupes fuchsiens et expliquons pourquoi notre méthode ne s’applique pas aux groupes arithmétiques.

The set of axes of hyperbolic elements in a Fuchsian group depends on the commensurability class of the group. In fact, it has been conjectured that it determines the commensurability class and this has been verified for groups of the second kind by G. Mess and for arithmetic groups by D. Long and A. Reid. Here we show that the conjecture holds for almost all Fuchsian groups and explain why our method fails for arithmetic groups.

Publié le :
DOI : https://doi.org/10.5802/afst.1606
Classification : 57M27,  37E30,  57M55
Mots clés : Fuchsian groups, commensurability
@article{AFST_2019_6_28_3_471_0,
     author = {Greg McShane},
     title = {Geodesic intersections and isoxial {Fuchsian} groups.},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {471--489},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {3},
     year = {2019},
     doi = {10.5802/afst.1606},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1606/}
}
Greg McShane. Geodesic intersections and isoxial Fuchsian groups.. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 3, pp. 471-489. doi : 10.5802/afst.1606. https://afst.centre-mersenne.org/articles/10.5802/afst.1606/

[1] Alan F. Beardon The Geometry of Discrete Groups, Graduate Texts in Mathematics, Volume 91, Springer, 1983 | MR 698777 | Zbl 0528.30001

[2] Peter Buser Geometry and Spectra of Compact Riemann surfaces, Progress in Mathematics, Volume 106, Birkhäuser, 1992 | MR 1183224 | Zbl 0770.53001

[3] Christopher B. Croke Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv., Volume 65 (1990) no. 1, pp. 150-169 | Article | MR 1036134 | Zbl 0704.53035

[4] Matthieu Gendulphe Trois applications du lemme de Schwarz aux surfaces hyperboliques (2014) (https://arxiv.org/abs/1404.4487)

[5] Steven Kerckhoff The Nielsen Realization problem, Ann. Math., Volume 117 (1983), pp. 235-265 | Article | MR 690845 | Zbl 0528.57008

[6] Darren Long; Alan W. Reid On Fuchsian groups with the same set of axes, Bull. Lond. Math. Soc., Volume 30 (1998) no. 5, pp. 533-538 | Article | MR 1643818 | Zbl 0935.20038

[7] Greg Mcshane On the variation of a series on Teichmüller space, Pac. J. Math., Volume 231 (2007) no. 2, pp. 461-479 | Article | MR 2346506 | Zbl 1168.30023

[8] Greg McShane; Hugo Parlier Multiplicities of simple closed geodesics and hypersurfaces in Teichmüller space, Geom. Topol., Volume 12 (2008) no. 4, pp. 1883-1919 | Article | Zbl 1154.57016

[9] Sugata Mondal Rigidity of length-angle spectrum for closed hyperbolic surfaces (2017) (https://arxiv.org/abs/1701.08829)

[10] Sugata Mondal An arithmetic property of the set of angles between closed geodesics on hyperbolic surfaces of finite type, Geom. Dedicata, Volume 195 (2018), pp. 241-247 | Article | MR 3820504 | Zbl 1396.53067

[11] Jean-Pierre Otal Le spectre marqué des longueurs des surfaces courbure négative, Ann. Math., Volume 131 (1990) no. 1, pp. 151-162 | Article | Zbl 0699.58018

[12] Alan W. Reid Traces, lengths, axes and commensurability, Ann. Fac. Sci. Toulouse, Math., Volume 23 (2014) no. 5, pp. 1103-1118 | Article | MR 3294604 | Zbl 1322.57002

[13] Toshikazu Sunada Riemannian coverings and isospectral manifolds, Ann. Math., Volume 121 (1985) no. 1, pp. 169-186 | Article | MR 782558 | Zbl 0585.58047

[14] Marie-France Vignéras Variétés riemanniennes isospectrales et non isométriques, Ann. Math., Volume 112 (1980) no. 1, pp. 21-32 | Article | Zbl 0445.53026