logo AFST

Topological properties of eigenfunctions of Riemannian surfaces
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 3, pp. 593-618.

Nous examinons les résultats [37] de B. Sevennec , [28] de J-P. Otal, [29] de J-P. Otal et E. Rosas, [25], [26] de l’auteur et [2], [3] de l’auteur avec ses collaborateurs W. Ballmann et H. Matthiesen. Notre motivation est de donner au lecteur une idée générale de la façon dont, dans ces travaux (relativement) récents, des arguments topologiques ont été utilisés pour prouver des résultats délicats sur la géométrie spectrale des surfaces.

We provide a short survey of the results [37] of B. Sevennec, [28] of J-P. Otal, [29] of J-P. Otal and E. Rosas, [25], [26] of the author and [2], [3] of the author with his collaborators W. Ballmann and H. Matthiesen. The motivation is to give the reader a general idea how, in these (relatively) recent works, topological arguments were used to prove delicate results in the spectral geometry of surfaces.

Publié le :
DOI : https://doi.org/10.5802/afst.1610
Classification : 58J50,  35P15,  53C99
Mots clés : Laplace operator, multiplicity of an eigenvalue, small eigenvalue
@article{AFST_2019_6_28_3_593_0,
     author = {Sugata Mondal},
     title = {Topological properties of eigenfunctions of {Riemannian} surfaces},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {593--618},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {3},
     year = {2019},
     doi = {10.5802/afst.1610},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1610/}
}
Sugata Mondal. Topological properties of eigenfunctions of Riemannian surfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 3, pp. 593-618. doi : 10.5802/afst.1610. https://afst.centre-mersenne.org/articles/10.5802/afst.1610/

[1] Werner Ballmann; Henrik Matthiesen; Sugata Mondal Small eigenvalues of surfaces - old and new (submitted)

[2] Werner Ballmann; Henrik Matthiesen; Sugata Mondal Small eigenvalues of closed surfaces, J. Differ. Geom., Volume 103 (2016) no. 1, pp. 1-13 | Article | MR 3488128 | Zbl 1341.53066

[3] Werner Ballmann; Henrik Matthiesen; Sugata Mondal Small eigenvalues of surfaces of finite type, Compos. Math., Volume 153 (2017) no. 8, pp. 1747-1768 | Article | MR 3705274 | Zbl 1401.35216

[4] Gérard Besson Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier, Volume 30 (1980) no. 1, pp. 109-128 | Article | Zbl 0417.30033

[5] Robert Brooks The bottom of the spectrum of a Riemannian covering, J. Reine Angew. Math., Volume 357 (1985), pp. 101-114 | MR 783536 | Zbl 0553.53027

[6] Robert Brooks; Eran Makover Riemann surfaces with large first eigenvalue, J. Anal. Math., Volume 83 (2001), pp. 243-258 | Article | MR 1828493 | Zbl 0981.30031

[7] Peter Buser Riemannsche Flächen mit Eigenwerten in (0,1/4), Comment. Math. Helv., Volume 52 (1977) no. 1, pp. 25-34 | Article | Zbl 0348.53027

[8] Peter Buser Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser, 2010, xvi+454 pages | MR 2742784 | Zbl 1239.32001

[9] Peter Buser; Marc Burger; Jozef Dodziuk Riemann surfaces of large genus and large λ 1 , Geometry and analysis on manifolds (Lecture Notes in Mathematics) Volume 1339, Springer, 1988, pp. 54-63 | Article | Zbl 0646.53040

[10] Shiu-Yuen Cheng Eigenfunctions and nodal set, Comment. Math. Helv., Volume 51 (1976), pp. 43-55 | Article | MR 397805 | Zbl 0334.35022

[11] Bruno Colbois; Gilles Courtois Les valeurs propres inférieures à 1/4 des surfaces de Riemann de petit rayon d’injectivité, Comment. Math. Helv., Volume 64 (1989) no. 3, pp. 349-362 | Article | Zbl 0684.53040

[12] Bruno Colbois; Yves Colin de Verdière Sur la multiplicité de la premiére valeur propre d’une surface de Riemann à courbure constante, Comment. Math. Helv., Volume 63 (1988) no. 2, pp. 194-208 | Article | Zbl 0656.53043

[13] Yves Colin de Verdière Construction de laplaciens dont une partie finie du spectre est donnée, Ann. Sci. Éc. Norm. Supér., Volume 20 (1987) no. 4, pp. 599-615 | Article | Zbl 0636.58036

[14] Harold Donnelly; Charles Fefferman Nodal sets for eigenfunctions of the Laplacian on surfaces, J. Am. Math. Soc., Volume 3 (1990) no. 2, pp. 333-353 | Article | MR 1035413 | Zbl 0702.58077

[15] Heinz Huber Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II, Math. Ann., Volume 142 (1960), pp. 385-398 | Article | MR 126549 | Zbl 0094.05703

[16] Martin N. Huxley Cheeger’s inequality with a boundary term, Comment. Math. Helv., Volume 58 (1983), pp. 347-354 | Article | MR 727706 | Zbl 0524.58046

[17] Henryk Iwaniec Spectral Methods of Automorphic Forms, Revista Matemática Iberoamericana, 1995 | Zbl 0847.11028

[18] Felix Jenni Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen, Comment. Math. Helv., Volume 59 (1984) no. 2, pp. 193-203 | Article | MR 749104 | Zbl 0541.30034

[19] Lizhen Ji Spectral degeneration of hyperbolic Riemann surfaces, J. Differ. Geom., Volume 38 (1993) no. 2, pp. 263-313 | MR 1237486 | Zbl 0793.53051

[20] Linda Keen Collars on Riemann surfaces, Discontinuous groups and Riemann surfaces (Annals of Mathematics Studies) Volume 79, Princeton University Press, 1974, pp. 263-268 | Article | Zbl 0304.30014

[21] Henry H. Kim Functoriality for the exterior square of GL 4 and symmetric fourth of GL 2 , J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 139-183 | MR 1937203 | Zbl 1018.11024

[22] Stanisław Łojasiewicz Sur le problème de la division, Stud. Math., Volume 18 (1959), pp. 87-136 | Article | Zbl 0115.10203

[23] Henry P. McKean An upper bound to the spectrum of Δ on a manifold of negative curvature, J. Differ. Geom., Volume 4 (1970), pp. 359-366 | Article | MR 266100 | Zbl 0197.18003

[24] Henry P. McKean Selberg’s trace formula as applied to a compact Riemann surface, Commun. Pure Appl. Math., Volume 25 (1972), pp. 225-246 (corrigendum in ibid. 27 (1974), p. 134) | Article | MR 473166

[25] Sugata Mondal On largeness and multiplicity of the first eigenvalue of finite area hyperbolic surfaces, Math. Z., Volume 281 (2015) no. 1-2, pp. 333-348 | Article | MR 3384873 | Zbl 06481986

[26] Sugata Mondal On topological upper-bounds on the number of small cuspidal eigenvalues of finite area hyperbolic surfaces, Int. Math. Res. Not., Volume 2015 (2015) no. 24, pp. 13208-13237 | Article | MR 3436143 | Zbl 1343.58014

[27] Nikolai S. Nadirashvili Multiple eigenvalues of the Laplace operator, Mat. Sb., Volume 133 (1987) no. 2, pp. 223-237 | Zbl 0672.35049

[28] Jean-Pierre Otal Three topological properties of small eigenfunctions, Geometry and dynamics of groups and spaces (Progress in Mathematics) Volume 265, Birkhäuser, 2008, pp. 685-695 | Article | MR 2402419 | Zbl 1187.35145

[29] Jean-Pierre Otal; Eulalio Rosas Pour toute surface hyperbolique de genre g, λ 2g-2 >1/4, Duke Math. J., Volume 150 (2009) no. 1, pp. 101-115 | Article | MR 2560109 | Zbl 1179.30041

[30] Romain Petrides Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces, Geom. Funct. Anal., Volume 24 (2014) no. 4, pp. 1336-1376 | Article | MR 3248488 | Zbl 1310.58022

[31] Yiannis Petridis Spectral data for finite volume hyperbolic surfaces at the bottom of the continuous spectrum, J. Funct. Anal., Volume 124 (1994) no. 1, pp. 61-94 | Article | MR 1284603 | Zbl 0806.58052

[32] Ralph S. Phillips; Peter C. Sarnak On cusps forms for co-finite subgroups of PSL(2,), Invent. Math., Volume 80 (1985), pp. 339-364 | Article | MR 788414 | Zbl 0558.10017

[33] Burton Randol Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Am. Math. Soc., Volume 80 (1974), pp. 996-1000 | Article | MR 400316 | Zbl 0317.30017

[34] Paul Schmutz Small eigenvalues on Y-pieces and on Riemann surfaces, Comment. Math. Helv., Volume 65 (1990) no. 4, pp. 603-614 | Article | MR 1078100 | Zbl 0752.53026

[35] Paul Schmutz Small eigenvalues on Riemann surfaces of genus 2, Invent. Math., Volume 106 (1991) no. 1, pp. 121-138 | Article | MR 1123377 | Zbl 0764.53035

[36] Atle Selberg Collected Papers, Vol. I, Springer, 1989 | MR 1117906 | Zbl 0675.10001

[37] Bruno Sévennec Multiplicity of the second Schrödinger eigenvalue on closed surfaces, Math. Ann., Volume 324 (2002) no. 1, pp. 195-211 | Article | Zbl 1053.58014

[38] Alexander Strohmaier; Ville Uski An algorithm for the computation of eigenvalues, spectral zeta functions and zeta-determinants on hyperbolic surfaces, Commun. Math. Phys., Volume 317 (2013) no. 3, pp. 827-869 (corrigendum in ibid. 359 (2018), no. 3, p. 827–869) | Article | MR 3009726 | Zbl 1261.65113

[39] Michael E. Taylor Partial differential equations. II. Qualitative studies of linear equations, Applied Mathematical Sciences, Volume 116, Springer, 1996, xxii+528 pages | MR 1395149 | Zbl 1206.35003

[40] Karen Uhlenbeck Generic properties of eigenfunctions, Am. J. Math., Volume 98 (1976) no. 4, pp. 1059-1078 | Article | MR 464332 | Zbl 0355.58017

[41] Scott A. Wolpert Spectral limits for hyperbolic surfaces I, Invent. Math., Volume 108 (1992) no. 1, pp. 67-89 | Article | MR 1156387 | Zbl 0772.11016

[42] Steven Zelditch Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | MR 916129 | Zbl 0643.58029