A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 5, pp. 831-908.

Pantev, Toën, Vaquié and Vezzosi [19] defined k-shifted symplectic derived schemes and stacks X for k, and Lagrangians f:LX in them. They have important applications to Calabi–Yau geometry and quantization. Bussi, Brav and Joyce [7] and Bouaziz and Grojnowski [5] proved “Darboux Theorems” giving explicit Zariski or étale local models for k-shifted symplectic derived schemes X for k<0 presenting them as twisted shifted cotangent bundles.

We prove a “Lagrangian Neighbourhood Theorem” which gives explicit Zariski or étale local models for Lagrangians f:LX in k-shifted symplectic derived schemes X for k<0, relative to the “Darboux form” local models of [7] for X. That is, locally such Lagrangians can be presented as twisted shifted conormal bundles. We also give a partial result when k=0.

We expect our results will have future applications to shifted Poisson geometry [12], and to defining “Fukaya categories” of complex or algebraic symplectic manifolds, and to the categorification of Donaldson–Thomas theory of Calabi–Yau 3-folds and “Cohomological Hall Algebras”.

Pantev, Toën, Vaquié et Vezzosi [19] ont défini des schémas et des champs dérivés symplectiques k-décalés X pour k, et des Lagrangiens f:LX en eux. Ils ont des applications importantes pour la géomètrie Calabi–Yau et la quantification. Bussi, Brav et Joyce [7] et Bouaziz et Grojnowski [5] ont prouvé des « théorèmes de Darboux » donnant des modàles locaux précis Zariski ou étale pour les schémas dérivés symplectiques k-décalés X pour k<0, les présentant comme des fibrés cotangent décalés tordus.

Nous prouvons un « théorème de voisinage Lagrangien » donnant des modèles locaux précis Zariski ou étale pour les Lagrangiens f:LX dans les schémas dérivés symplectiques k-décalés X pour k<0, par rapport à la « forme Darboux » de Bussi–Brav–Joyce pour X. C’est-à-dire, localement, ces Lagrangiens peuvent être présentés sous forme de fibrés conormaux décalés tordus. Nous donnons aussi un résultat partiel lorsque k=0.

Nous espérons que nos résultats auront de futures applications à la géométrie de Poisson k-décalée de [12], à la définition de « catégories de Fukaya » de variétés symplectiques complexes ou algébriques, à la catégorification de la théorie de Donaldson–Thomas des variétés de Calabi–Yau de dimension 3, et au « Algèbres de Hall Cohomologiques ».

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1616

Dominic Joyce 1; Pavel Safronov 2

1 The Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
2 Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2019_6_28_5_831_0,
     author = {Dominic Joyce and Pavel Safronov},
     title = {A {Lagrangian} {Neighbourhood} {Theorem} for shifted symplectic derived schemes},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {831--908},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {5},
     year = {2019},
     doi = {10.5802/afst.1616},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1616/}
}
TY  - JOUR
AU  - Dominic Joyce
AU  - Pavel Safronov
TI  - A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 831
EP  - 908
VL  - 28
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1616/
DO  - 10.5802/afst.1616
LA  - en
ID  - AFST_2019_6_28_5_831_0
ER  - 
%0 Journal Article
%A Dominic Joyce
%A Pavel Safronov
%T A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 831-908
%V 28
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1616/
%R 10.5802/afst.1616
%G en
%F AFST_2019_6_28_5_831_0
Dominic Joyce; Pavel Safronov. A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 5, pp. 831-908. doi : 10.5802/afst.1616. https://afst.centre-mersenne.org/articles/10.5802/afst.1616/

[1] Lino Amorim; Oren Ben-Bassat Perversely categorified Lagrangian correspondences, Adv. Theor. Math. Phys., Volume 21 (2017) no. 2, pp. 289-381 | DOI | MR | Zbl

[2] Oren Ben-Bassat Multiple derived Lagrangian intersections, Stacks and categories in geometry, topology, and algebra (Contemporary Mathematics), Volume 643, American Mathematical Society, 2015, pp. 119-126 | DOI | MR | Zbl

[3] Oren Ben-Bassat; Christopher Brav; Vittoria Bussi; Dominic Joyce A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol., Volume 19 (2015) no. 3, pp. 1287-1359 | DOI | MR | Zbl

[4] Dennis Borisov; Dominic Joyce Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds, Geom. Topol., Volume 21 (2017) no. 6, pp. 3231-3311 | DOI | MR | Zbl

[5] E. Bouaziz; Ian Grojnowski A d-shifted Darboux theorem (2013) (https://arxiv.org/abs/1309.2197)

[6] Christopher Brav; Vittoria Bussi; Delphine Dupont; Dominic Joyce; Balázs Szendrői Symmetries and stabilization for sheaves of vanishing cycles, J. Singul., Volume 11 (2015), pp. 85-151 (with an appendix by Jörg Schürmann) | MR | Zbl

[7] Christopher Brav; Vittoria Bussi; Dominic Joyce A Darboux theorem for schemes with shifted symplectic structure, J. Am. Math. Soc., Volume 32 (2019) no. 2, pp. 399-443 | DOI | MR | Zbl

[8] Vittoria Bussi Categorification of Lagrangian intersections on complex symplectic manifolds using perverse sheaves of vanishing cycles (2014) (https://arxiv.org/abs/1404.1329)

[9] Vittoria Bussi Generalized Donaldson–Thomas theory over fields 𝕂 (2014) (https://arxiv.org/abs/1403.2403)

[10] Vittoria Bussi; Dominic Joyce; Sven Meinhardt On motivic vanishing cycles of critical loci, J. Algebr. Geom., Volume 28 (2019) no. 3, pp. 405-438 | DOI | MR | Zbl

[11] Damien Calaque Lagrangian structures on mapping stacks and semi-classical TFTs,, Stacks and categories in geometry, topology, and algebra (Contemporary Mathematics), Volume 643, American Mathematical Society, 2015, pp. 1-23 | DOI | MR | Zbl

[12] Damien Calaque; Tony Pantev; Bertrand Toën; Michel Vaquié; Gabriele Vezzosi Shifted Poisson structures and deformation quantization, J. Topol., Volume 10 (2017) no. 2, pp. 483-584 | DOI | MR | Zbl

[13] Dominic Joyce A classical model for derived critical loci, J. Differ. Geom., Volume 101 (2015) no. 2, pp. 289-367 | DOI | MR | Zbl

[14] Anton Kapustin; Lev Rozansky Three-dimensional topological field theory and symplectic algebraic geometry II, Commun. Number Theory Phys., Volume 4 (2010) no. 3, pp. 463-549 | DOI | MR | Zbl

[15] Maxim Kontsevich; Yan Soibelman Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., Volume 5 (2011) no. 2, pp. 231-352 | DOI | MR | Zbl

[16] Jacob Lurie Higher algebra (2011) (prepublication book draft, http://www.math.harvard.edu/~lurie/papers/HA.pdf) | Zbl

[17] Valerio Melani Poisson bivectors and Poisson brackets on affine derived stacks, Adv. Math., Volume 288 (2016), pp. 1097-1120 | DOI | MR | Zbl

[18] Valerio Melani; Pavel Safronov Derived coisotropic structures II: stacks and quantization, Sel. Math., New Ser., Volume 24 (2018) no. 4, pp. 3119-3173 | DOI | MR | Zbl

[19] Tony Pantev; Bertrand Toën; Michel Vaquié; Gabriele Vezzosi Shifted symplectic structures, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 271-328 | DOI | MR | Zbl

[20] Anatoly Preygel Thom–Sebastiani and duality for matrix factorizations (2011) (https://arxiv.org/abs/1101.5834)

[21] Jonathan P. Pridham Shifted Poisson and symplectic structures on derived N-stacks, J. Topol., Volume 10 (2017) no. 1, pp. 178-210 | MR | Zbl

[22] Pavel Safronov Braces and Poisson additivity, Compos. Math., Volume 154 (2018) no. 8, pp. 1698-1745 | DOI | MR | Zbl

[23] Bertrand Toën Higher and derived stacks: a global overview, Algebraic geometry—Seattle 2005. Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 80, American Mathematical Society, 2009, pp. 435-487 | MR | Zbl

[24] Bertrand Toën Derived algebraic geometry, EMS Surv. Math. Sci., Volume 1 (2014) no. 2, pp. 153-240 | DOI | MR | Zbl

[25] Bertrand Toën Derived algebraic geometry and deformation quantization, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II (2014), pp. 769-792 | Zbl

[26] Bertrand Toën; Gabriele Vezzosi From HAG to DAG: derived moduli stacks, Axiomatic, enriched and motivic homotopy theory (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 131, Kluwer Academic Publishers, 2004, pp. 173-216 | DOI | MR | Zbl

[27] Bertrand Toën; Gabriele Vezzosi Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Am. Math. Soc., Volume 193 (2008) no. 902 | MR | Zbl

Cited by Sources: