Pantev, Toën, Vaquié and Vezzosi [19] defined -shifted symplectic derived schemes and stacks for , and Lagrangians in them. They have important applications to Calabi–Yau geometry and quantization. Bussi, Brav and Joyce [7] and Bouaziz and Grojnowski [5] proved “Darboux Theorems” giving explicit Zariski or étale local models for -shifted symplectic derived schemes for presenting them as twisted shifted cotangent bundles.
We prove a “Lagrangian Neighbourhood Theorem” which gives explicit Zariski or étale local models for Lagrangians in -shifted symplectic derived schemes for , relative to the “Darboux form” local models of [7] for . That is, locally such Lagrangians can be presented as twisted shifted conormal bundles. We also give a partial result when .
We expect our results will have future applications to shifted Poisson geometry [12], and to defining “Fukaya categories” of complex or algebraic symplectic manifolds, and to the categorification of Donaldson–Thomas theory of Calabi–Yau 3-folds and “Cohomological Hall Algebras”.
Pantev, Toën, Vaquié et Vezzosi [19] ont défini des schémas et des champs dérivés symplectiques -décalés pour , et des Lagrangiens en eux. Ils ont des applications importantes pour la géomètrie Calabi–Yau et la quantification. Bussi, Brav et Joyce [7] et Bouaziz et Grojnowski [5] ont prouvé des « théorèmes de Darboux » donnant des modàles locaux précis Zariski ou étale pour les schémas dérivés symplectiques -décalés pour , les présentant comme des fibrés cotangent décalés tordus.
Nous prouvons un « théorème de voisinage Lagrangien » donnant des modèles locaux précis Zariski ou étale pour les Lagrangiens dans les schémas dérivés symplectiques -décalés pour , par rapport à la « forme Darboux » de Bussi–Brav–Joyce pour . C’est-à-dire, localement, ces Lagrangiens peuvent être présentés sous forme de fibrés conormaux décalés tordus. Nous donnons aussi un résultat partiel lorsque .
Nous espérons que nos résultats auront de futures applications à la géométrie de Poisson -décalée de [12], à la définition de « catégories de Fukaya » de variétés symplectiques complexes ou algébriques, à la catégorification de la théorie de Donaldson–Thomas des variétés de Calabi–Yau de dimension 3, et au « Algèbres de Hall Cohomologiques ».
Accepted:
Published online:
Dominic Joyce 1; Pavel Safronov 2
@article{AFST_2019_6_28_5_831_0, author = {Dominic Joyce and Pavel Safronov}, title = {A {Lagrangian} {Neighbourhood} {Theorem} for shifted symplectic derived schemes}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {831--908}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {5}, year = {2019}, doi = {10.5802/afst.1616}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1616/} }
TY - JOUR AU - Dominic Joyce AU - Pavel Safronov TI - A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 831 EP - 908 VL - 28 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1616/ DO - 10.5802/afst.1616 LA - en ID - AFST_2019_6_28_5_831_0 ER -
%0 Journal Article %A Dominic Joyce %A Pavel Safronov %T A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 831-908 %V 28 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1616/ %R 10.5802/afst.1616 %G en %F AFST_2019_6_28_5_831_0
Dominic Joyce; Pavel Safronov. A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 5, pp. 831-908. doi : 10.5802/afst.1616. https://afst.centre-mersenne.org/articles/10.5802/afst.1616/
[1] Perversely categorified Lagrangian correspondences, Adv. Theor. Math. Phys., Volume 21 (2017) no. 2, pp. 289-381 | DOI | MR | Zbl
[2] Multiple derived Lagrangian intersections, Stacks and categories in geometry, topology, and algebra (Contemporary Mathematics), Volume 643, American Mathematical Society, 2015, pp. 119-126 | DOI | MR | Zbl
[3] A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol., Volume 19 (2015) no. 3, pp. 1287-1359 | DOI | MR | Zbl
[4] Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds, Geom. Topol., Volume 21 (2017) no. 6, pp. 3231-3311 | DOI | MR | Zbl
[5] A -shifted Darboux theorem (2013) (https://arxiv.org/abs/1309.2197)
[6] Symmetries and stabilization for sheaves of vanishing cycles, J. Singul., Volume 11 (2015), pp. 85-151 (with an appendix by Jörg Schürmann) | MR | Zbl
[7] A Darboux theorem for schemes with shifted symplectic structure, J. Am. Math. Soc., Volume 32 (2019) no. 2, pp. 399-443 | DOI | MR | Zbl
[8] Categorification of Lagrangian intersections on complex symplectic manifolds using perverse sheaves of vanishing cycles (2014) (https://arxiv.org/abs/1404.1329)
[9] Generalized Donaldson–Thomas theory over fields (2014) (https://arxiv.org/abs/1403.2403)
[10] On motivic vanishing cycles of critical loci, J. Algebr. Geom., Volume 28 (2019) no. 3, pp. 405-438 | DOI | MR | Zbl
[11] Lagrangian structures on mapping stacks and semi-classical TFTs,, Stacks and categories in geometry, topology, and algebra (Contemporary Mathematics), Volume 643, American Mathematical Society, 2015, pp. 1-23 | DOI | MR | Zbl
[12] Shifted Poisson structures and deformation quantization, J. Topol., Volume 10 (2017) no. 2, pp. 483-584 | DOI | MR | Zbl
[13] A classical model for derived critical loci, J. Differ. Geom., Volume 101 (2015) no. 2, pp. 289-367 | DOI | MR | Zbl
[14] Three-dimensional topological field theory and symplectic algebraic geometry II, Commun. Number Theory Phys., Volume 4 (2010) no. 3, pp. 463-549 | DOI | MR | Zbl
[15] Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., Volume 5 (2011) no. 2, pp. 231-352 | DOI | MR | Zbl
[16] Higher algebra (2011) (prepublication book draft, http://www.math.harvard.edu/~lurie/papers/HA.pdf) | Zbl
[17] Poisson bivectors and Poisson brackets on affine derived stacks, Adv. Math., Volume 288 (2016), pp. 1097-1120 | DOI | MR | Zbl
[18] Derived coisotropic structures II: stacks and quantization, Sel. Math., New Ser., Volume 24 (2018) no. 4, pp. 3119-3173 | DOI | MR | Zbl
[19] Shifted symplectic structures, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 271-328 | DOI | MR | Zbl
[20] Thom–Sebastiani and duality for matrix factorizations (2011) (https://arxiv.org/abs/1101.5834)
[21] Shifted Poisson and symplectic structures on derived -stacks, J. Topol., Volume 10 (2017) no. 1, pp. 178-210 | MR | Zbl
[22] Braces and Poisson additivity, Compos. Math., Volume 154 (2018) no. 8, pp. 1698-1745 | DOI | MR | Zbl
[23] Higher and derived stacks: a global overview, Algebraic geometry—Seattle 2005. Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 80, American Mathematical Society, 2009, pp. 435-487 | MR | Zbl
[24] Derived algebraic geometry, EMS Surv. Math. Sci., Volume 1 (2014) no. 2, pp. 153-240 | DOI | MR | Zbl
[25] Derived algebraic geometry and deformation quantization, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II (2014), pp. 769-792 | Zbl
[26] From HAG to DAG: derived moduli stacks, Axiomatic, enriched and motivic homotopy theory (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 131, Kluwer Academic Publishers, 2004, pp. 173-216 | DOI | MR | Zbl
[27] Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Am. Math. Soc., Volume 193 (2008) no. 902 | MR | Zbl
Cited by Sources: