Extension operator for the MIT Bag Model
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 135-147.

This paper is devoted to the construction of an extension operator for the MIT bag Dirac operator on a 𝒞 2,1 bounded open set of 3 in the spirit of the extension theorems for Sobolev spaces. As an elementary byproduct, we prove that the MIT bag Dirac operator is self-adjoint.

Cet article est consacré à la construction d’un opérateur d’extension pour l’opérateur MIT bag Dirac sur un ouvert borné de classe 𝒞 2,1 de 3 dans l’esprit des théorèmes d’extension pour les espaces de Sobolev. L’auto-adjonction de l’opérateur MIT bag Dirac en est une conséquence élémentaire.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1627
Classification: 35J60, 81Q10, 81V05
Keywords: Dirac operator, Hadron bag model, Relativistic particle in a box, MIT bag model

N. Arrizabalaga 1; L. Le Treust 2; N. Raymond 3

1 Departamento de Matemáticas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain
2 Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
3 IRMAR, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2020_6_29_1_135_0,
     author = {N. Arrizabalaga and L. Le Treust and N. Raymond},
     title = {Extension operator for the {MIT} {Bag} {Model}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {135--147},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {1},
     year = {2020},
     doi = {10.5802/afst.1627},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1627/}
}
TY  - JOUR
AU  - N. Arrizabalaga
AU  - L. Le Treust
AU  - N. Raymond
TI  - Extension operator for the MIT Bag Model
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 135
EP  - 147
VL  - 29
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1627/
DO  - 10.5802/afst.1627
LA  - en
ID  - AFST_2020_6_29_1_135_0
ER  - 
%0 Journal Article
%A N. Arrizabalaga
%A L. Le Treust
%A N. Raymond
%T Extension operator for the MIT Bag Model
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 135-147
%V 29
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1627/
%R 10.5802/afst.1627
%G en
%F AFST_2020_6_29_1_135_0
N. Arrizabalaga; L. Le Treust; N. Raymond. Extension operator for the MIT Bag Model. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 135-147. doi : 10.5802/afst.1627. https://afst.centre-mersenne.org/articles/10.5802/afst.1627/

[1] Naiara Arrizabalaga; Loïc Le Treust; Nicolas Raymond On the MIT bag model in the non-relativistic limit, Commun. Math. Phys., Volume 354 (2017) no. 2, pp. 641-669 | DOI | MR | Zbl

[2] Christian Bär; Werner Ballmann Boundary value problems for elliptic differential operators of first order, Surveys in differential geometry. Vol. XVII (Surveys in Differential Geometry), Volume 17, International Press, 2012, pp. 1-78 | MR | Zbl

[3] Christian Bär; Werner Ballmann Guide to elliptic boundary value problems for Dirac-type operators, Arbeitstagung Bonn 2013 (Progress in Mathematics), Volume 319, Birkhäuser/Springer, 2016, pp. 43-80 | MR | Zbl

[4] Rafael D. Benguria; Søren Fournais; Edgardo Stockmeyer; Hanne van den Bosch Self-adjointness of two-dimensional Dirac operators on domains, Ann. Henri Poincaré, Volume 18 (2017) no. 4, pp. 1371-1383 | DOI | MR | Zbl

[5] Bernhelm Booß Bavnbek; Matthias Lesch; Chaofeng Zhu The Calderón projection: new definition and applications, J. Geom. Phys., Volume 59 (2009) no. 7, pp. 784-826 | DOI | Zbl

[6] Haim Brezis Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011, xiv+599 pages | Zbl

[7] Oussama Hijazi; Sebastián Montiel; Antonio Roldán Eigenvalue boundary problems for the Dirac operator, Commun. Math. Phys., Volume 231 (2002) no. 3, pp. 375-390 | DOI | MR | Zbl

[8] Keith Johnson The M.I.T. bag model, Acta Phys. Pol., Volume B6 (1975), pp. 865-892

[9] Jindřich Nečas Direct methods in the theory of elliptic equations, Springer Monographs in Mathematics, Springer, 2012, xvi+372 pages (translated from the 1967 French original by Gerard Tronel and Alois Kufner) | Zbl

[10] Thomas Ourmières-Bonafos; Luis Vega A strategy for self-adjointness of Dirac operators: applications to the MIT bag model and δ-shell interactions, Publ. Mat., Barc., Volume 62 (2018) no. 2, pp. 397-437 | DOI | MR | Zbl

[11] Edgardo Stockmeyer; Semjon Vugalter Infinite mass boundary conditions for Dirac operators, J. Spectr. Theory, Volume 9 (2019) no. 2, pp. 569-600 | DOI | MR | Zbl

[12] Bernd Thaller The Dirac equation, Texts and Monographs in Physics, Springer, 1992, xviii+357 pages | MR | Zbl

Cited by Sources: