This paper is devoted to the construction of an extension operator for the MIT bag Dirac operator on a bounded open set of in the spirit of the extension theorems for Sobolev spaces. As an elementary byproduct, we prove that the MIT bag Dirac operator is self-adjoint.
Cet article est consacré à la construction d’un opérateur d’extension pour l’opérateur MIT bag Dirac sur un ouvert borné de classe de dans l’esprit des théorèmes d’extension pour les espaces de Sobolev. L’auto-adjonction de l’opérateur MIT bag Dirac en est une conséquence élémentaire.
Accepted:
Published online:
Keywords: Dirac operator, Hadron bag model, Relativistic particle in a box, MIT bag model
N. Arrizabalaga 1; L. Le Treust 2; N. Raymond 3
@article{AFST_2020_6_29_1_135_0, author = {N. Arrizabalaga and L. Le Treust and N. Raymond}, title = {Extension operator for the {MIT} {Bag} {Model}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {135--147}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {1}, year = {2020}, doi = {10.5802/afst.1627}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1627/} }
TY - JOUR AU - N. Arrizabalaga AU - L. Le Treust AU - N. Raymond TI - Extension operator for the MIT Bag Model JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 135 EP - 147 VL - 29 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1627/ DO - 10.5802/afst.1627 LA - en ID - AFST_2020_6_29_1_135_0 ER -
%0 Journal Article %A N. Arrizabalaga %A L. Le Treust %A N. Raymond %T Extension operator for the MIT Bag Model %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 135-147 %V 29 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1627/ %R 10.5802/afst.1627 %G en %F AFST_2020_6_29_1_135_0
N. Arrizabalaga; L. Le Treust; N. Raymond. Extension operator for the MIT Bag Model. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 135-147. doi : 10.5802/afst.1627. https://afst.centre-mersenne.org/articles/10.5802/afst.1627/
[1] On the MIT bag model in the non-relativistic limit, Commun. Math. Phys., Volume 354 (2017) no. 2, pp. 641-669 | DOI | MR | Zbl
[2] Boundary value problems for elliptic differential operators of first order, Surveys in differential geometry. Vol. XVII (Surveys in Differential Geometry), Volume 17, International Press, 2012, pp. 1-78 | MR | Zbl
[3] Guide to elliptic boundary value problems for Dirac-type operators, Arbeitstagung Bonn 2013 (Progress in Mathematics), Volume 319, Birkhäuser/Springer, 2016, pp. 43-80 | MR | Zbl
[4] Self-adjointness of two-dimensional Dirac operators on domains, Ann. Henri Poincaré, Volume 18 (2017) no. 4, pp. 1371-1383 | DOI | MR | Zbl
[5] The Calderón projection: new definition and applications, J. Geom. Phys., Volume 59 (2009) no. 7, pp. 784-826 | DOI | Zbl
[6] Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011, xiv+599 pages | Zbl
[7] Eigenvalue boundary problems for the Dirac operator, Commun. Math. Phys., Volume 231 (2002) no. 3, pp. 375-390 | DOI | MR | Zbl
[8] The M.I.T. bag model, Acta Phys. Pol., Volume B6 (1975), pp. 865-892
[9] Direct methods in the theory of elliptic equations, Springer Monographs in Mathematics, Springer, 2012, xvi+372 pages (translated from the 1967 French original by Gerard Tronel and Alois Kufner) | Zbl
[10] A strategy for self-adjointness of Dirac operators: applications to the MIT bag model and -shell interactions, Publ. Mat., Barc., Volume 62 (2018) no. 2, pp. 397-437 | DOI | MR | Zbl
[11] Infinite mass boundary conditions for Dirac operators, J. Spectr. Theory, Volume 9 (2019) no. 2, pp. 569-600 | DOI | MR | Zbl
[12] The Dirac equation, Texts and Monographs in Physics, Springer, 1992, xviii+357 pages | MR | Zbl
Cited by Sources: