A Bagnera–de Franchis variety is the quotient of an Abelian variety by a free action of a finite cyclic group , which does not contain only translations. Constructing explicit polarizations and using a method introduced by F. Catanese, we classify split Bagnera–de Franchis varieties (i.e., there is a direct sum decomposition of into -invariant Abelian subvarieties, indexed by , on which the linear part of acts with eigenvalues of order ) up to complex conjugation in dimensions .
Une variété de Bagnera–de Franchis est un quotient d’une variété abélienne par un groupe cyclique fini agissant librement et ne consistant pas uniquement en des translations. Par une construction explicite des polarisations, et en suivant une méthode introduite par F. Catanese, nous donnons une classification exhaustive à conjugaison complexe près et au sens suivant des variétés de Bagnera–de Franchis scindées jusqu’en dimension : admet une décomposition en somme directe de sous-variétés abéliennes -invariantes indexées par sur lesquelles la partie linéaire de agit avec des valeurs propres d’ordre .
Accepted:
Published online:
Andreas Demleitner 1
@article{AFST_2020_6_29_1_111_0, author = {Andreas Demleitner}, title = {Classification of {Bagnera{\textendash}de} {Franchis} {Varieties} in {Small} {Dimensions}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {111--133}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {1}, year = {2020}, doi = {10.5802/afst.1626}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1626/} }
TY - JOUR AU - Andreas Demleitner TI - Classification of Bagnera–de Franchis Varieties in Small Dimensions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 111 EP - 133 VL - 29 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1626/ DO - 10.5802/afst.1626 LA - en ID - AFST_2020_6_29_1_111_0 ER -
%0 Journal Article %A Andreas Demleitner %T Classification of Bagnera–de Franchis Varieties in Small Dimensions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 111-133 %V 29 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1626/ %R 10.5802/afst.1626 %G en %F AFST_2020_6_29_1_111_0
Andreas Demleitner. Classification of Bagnera–de Franchis Varieties in Small Dimensions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 111-133. doi : 10.5802/afst.1626. https://afst.centre-mersenne.org/articles/10.5802/afst.1626/
[1] Le superficie algebriche le quali ammettono una rappresentazione parametrica mediante funzioni iperellittiche di due argomenti, Mem. di Mat. e di Fis. Soc. It. Sc. (3), Volume 15 (1908), pp. 253-343 | Zbl
[2] Automorphisms of 3-dimensional abelian varieties, Complex geometry of groups (Olmué, 1998) (Contemporary Mathematics), Volume 240, American Mathematical Society, 1999, pp. 25-47 | DOI | MR | Zbl
[3] Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 2004, xii+635 pages | MR | Zbl
[4] Topological methods in moduli theory, Bull. Math. Sci., Volume 5 (2015) no. 3, pp. 287-449 | DOI | MR
[5] On the irregularity of cyclic coverings of algebraic surfaces, Geometry of complex projective varieties (Cetraro, 1990) (Seminars and Conferences), Volume 9, Mediterranean Press, 1993, pp. 89-115 | MR | Zbl
[6] Rigid Group Actions on Complex Tori are Projective (after Ekedahl) (2017) (https://arxiv.org/abs/1711.05545v1)
[7] Mémoire sur les surfaces hyperelliptiques, Acta Math. 32 (1909), p. 283-392 and 33 (1910), p. 321-403 | Zbl
[8] Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 1, pp. 1-97 | DOI | MR | Zbl
[9] Principles of algebraic geometry, John Wiley & Sons, 1978, xii+813 pages (Pure and Applied Mathematics) | Zbl
[10] Hyperelliptic varieties, Tôhoku Math. J., Volume 53 (2001) no. 4, pp. 491-510 | DOI | MR | Zbl
[11] Introduction to algebraic -theory, Annals of Mathematics Studies, 72, Princeton University Press; University of Tokyo Press, 1971, xiii+184 pages | MR | Zbl
[12] Prime order automorphisms of Abelian surfaces: a lattice-theoretic point of view (https://arxiv.org/abs/1506.05679v1)
[13] Discontinuous groups of affine transformations of , Tôhoku Math. J., Volume 28 (1976) no. 1, pp. 89-94 | DOI | MR | Zbl
[14] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1982, xi+389 pages | MR | Zbl
Cited by Sources: