Classification of Bagnera–de Franchis Varieties in Small Dimensions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 111-133.

A Bagnera–de Franchis variety X=A/G is the quotient of an Abelian variety A by a free action of a finite cyclic group G=gBihol(A), which does not contain only translations. Constructing explicit polarizations and using a method introduced by F. Catanese, we classify split Bagnera–de Franchis varieties (i.e., there is a direct sum decomposition of A into G-invariant Abelian subvarieties, indexed by k|#G, on which the linear part of g acts with eigenvalues of order k) up to complex conjugation in dimensions 4.

Une variété de Bagnera–de Franchis X est un quotient A/G d’une variété abélienne A par un groupe cyclique fini G=gBihol(A) agissant librement et ne consistant pas uniquement en des translations. Par une construction explicite des polarisations, et en suivant une méthode introduite par F. Catanese, nous donnons une classification exhaustive à conjugaison complexe près et au sens suivant des variétés de Bagnera–de Franchis scindées jusqu’en dimension 4 : A admet une décomposition en somme directe de sous-variétés abéliennes G-invariantes indexées par k|#G sur lesquelles la partie linéaire de g agit avec des valeurs propres d’ordre k.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1626

Andreas Demleitner 1

1 Andreas Demleitner, Lehrstuhl Mathematik VIII, Mathematisches Institut der Universität Bayreuth, NW II, Universitätsstr. 30, D-95447 Bayreuth, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2020_6_29_1_111_0,
     author = {Andreas Demleitner},
     title = {Classification of {Bagnera{\textendash}de} {Franchis} {Varieties} in {Small} {Dimensions}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {111--133},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {1},
     year = {2020},
     doi = {10.5802/afst.1626},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1626/}
}
TY  - JOUR
AU  - Andreas Demleitner
TI  - Classification of Bagnera–de Franchis Varieties in Small Dimensions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 111
EP  - 133
VL  - 29
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1626/
DO  - 10.5802/afst.1626
LA  - en
ID  - AFST_2020_6_29_1_111_0
ER  - 
%0 Journal Article
%A Andreas Demleitner
%T Classification of Bagnera–de Franchis Varieties in Small Dimensions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 111-133
%V 29
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1626/
%R 10.5802/afst.1626
%G en
%F AFST_2020_6_29_1_111_0
Andreas Demleitner. Classification of Bagnera–de Franchis Varieties in Small Dimensions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 111-133. doi : 10.5802/afst.1626. https://afst.centre-mersenne.org/articles/10.5802/afst.1626/

[1] Giuseppe Bagnera; Michele de Franchis Le superficie algebriche le quali ammettono una rappresentazione parametrica mediante funzioni iperellittiche di due argomenti, Mem. di Mat. e di Fis. Soc. It. Sc. (3), Volume 15 (1908), pp. 253-343 | Zbl

[2] Christina Birkenhake; Víctor González-Aguilera; Herbert Lange Automorphisms of 3-dimensional abelian varieties, Complex geometry of groups (Olmué, 1998) (Contemporary Mathematics), Volume 240, American Mathematical Society, 1999, pp. 25-47 | DOI | MR | Zbl

[3] Christina Birkenhake; Herbert Lange Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 2004, xii+635 pages | MR | Zbl

[4] Fabrizio Catanese Topological methods in moduli theory, Bull. Math. Sci., Volume 5 (2015) no. 3, pp. 287-449 | DOI | MR

[5] Fabrizio Catanese; Ciro Ciliberto On the irregularity of cyclic coverings of algebraic surfaces, Geometry of complex projective varieties (Cetraro, 1990) (Seminars and Conferences), Volume 9, Mediterranean Press, 1993, pp. 89-115 | MR | Zbl

[6] Fabrizio Catanese; Andreas Demleitner Rigid Group Actions on Complex Tori are Projective (after Ekedahl) (2017) (https://arxiv.org/abs/1711.05545v1)

[7] Federigo Enriques; Francesco Severi Mémoire sur les surfaces hyperelliptiques, Acta Math. 32 (1909), p. 283-392 and 33 (1910), p. 321-403 | Zbl

[8] Akira Fujiki Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 1, pp. 1-97 | DOI | MR | Zbl

[9] Phillip Griffiths; Joseph Harris Principles of algebraic geometry, John Wiley & Sons, 1978, xii+813 pages (Pure and Applied Mathematics) | Zbl

[10] Herbert Lange Hyperelliptic varieties, Tôhoku Math. J., Volume 53 (2001) no. 4, pp. 491-510 | DOI | MR | Zbl

[11] John Milnor Introduction to algebraic K-theory, Annals of Mathematics Studies, 72, Princeton University Press; University of Tokyo Press, 1971, xiii+184 pages | MR | Zbl

[12] Giovanni Mongardi; Kévin Tari; Malte Wandel Prime order automorphisms of Abelian surfaces: a lattice-theoretic point of view (https://arxiv.org/abs/1506.05679v1)

[13] Kôji Uchida; Hisao Yoshihara Discontinuous groups of affine transformations of 3 , Tôhoku Math. J., Volume 28 (1976) no. 1, pp. 89-94 | DOI | MR | Zbl

[14] Lawrence C. Washington Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1982, xi+389 pages | MR | Zbl

Cited by Sources: