Je décris une théorie algèbro-géometrique de squelettes, qui fournit une cadre unifiée pour l’étude de variétés tropicaux, les squelettes des variétés analytiques non Archimediennes, et les variétés différentielles avec structure affine singulier. Ces squelettes sont des espaces munies d’un faisceau structural de semianneaux topologiques, et sont localement isomorphes aux spectres de ceux-ci. Le résultat principal de cet article dit que l’espace topologique sous-jacent d’une variété analytique non-Archimedienne peut être localement reconstruit par les sections du faisceau de valuations “point-par-point” de ses fonctions analytiques.
I describe an algebro-geometric theory of skeleta, which provides a unified setting for the study of tropical varieties, skeleta of non-Archimedean analytic spaces, and affine manifolds with singularities. Skeleta are spaces equipped with a structure sheaf of topological semirings, and are locally modelled on the spectra of the same. The primary result of this paper is that the topological space underlying a non-Archimedean analytic space may locally be recovered from the sections of the sheaf of pointwise valuations of its analytic functions; in other words, is a skeleton.
Accepté le :
Publié le :
@article{AFST_2020_6_29_2_431_0, author = {Andrew W. Macpherson}, title = {Skeleta in {non-Archimedean} and tropical geometry}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {431--506}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {2}, year = {2020}, doi = {10.5802/afst.1637}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1637/} }
TY - JOUR AU - Andrew W. Macpherson TI - Skeleta in non-Archimedean and tropical geometry JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 431 EP - 506 VL - 29 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1637/ DO - 10.5802/afst.1637 LA - en ID - AFST_2020_6_29_2_431_0 ER -
%0 Journal Article %A Andrew W. Macpherson %T Skeleta in non-Archimedean and tropical geometry %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 431-506 %V 29 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1637/ %R 10.5802/afst.1637 %G en %F AFST_2020_6_29_2_431_0
Andrew W. Macpherson. Skeleta in non-Archimedean and tropical geometry. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 2, pp. 431-506. doi : 10.5802/afst.1637. https://afst.centre-mersenne.org/articles/10.5802/afst.1637/
[1] Théorie des topos et cohomologie étale des schémas. (SGA 4), Lecture Notes in Mathematics, Springer, 1972 | Zbl
[2] Nonarchimedean geometry, tropicalization, and metrics on curves, Algebr. Geom., Volume 3 (2016) no. 1, pp. 63-105 | DOI | MR | Zbl
[3] Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Étud. Sci. (1993) no. 78, pp. 5-161 | DOI | Numdam | MR | Zbl
[4] Smooth -adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | DOI | MR | Zbl
[5] Séminaire Banach, Springer, 1962
[6] A new approach to Arakelov geometry (2007) (https://arxiv.org/abs/0704.2030) | Zbl
[7] Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math., Volume 601 (2006), pp. 139-157 | MR | Zbl
[8] Foundations of rigid geometry. I, EMS Monographs in Mathematics, European Mathematical Society, 2018, xxxiv+829 pages | Zbl
[9] Equations of tropical varieties, Duke Math. J., Volume 165 (2016) no. 18, pp. 3379-3433 | DOI | MR | Zbl
[10] Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, 114, American Mathematical Society, 2011, xvi+317 pages | MR | Zbl
[11] From real affine geometry to complex geometry, Ann. Math., Volume 174 (2011) no. 3, pp. 1301-1428 | DOI | MR | Zbl
[12] Eléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften, 166, Springer, 1971, ix+466 pages | Zbl
[13] Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30, Vieweg & Sohn, 1996, x+450 pages | MR | Zbl
[14] Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000), World Scientific, 2001, pp. 203-263 | DOI | Zbl
[15] Affine structures and non-Archimedean analytic spaces, The unity of mathematics (Progress in Mathematics), Volume 244, Birkhäuser, 2006, pp. 321-385 | DOI | MR | Zbl
[16] Sheaves in geometry and logic, Universitext, Springer, 1994, xii+629 pages (A first introduction to topos theory, Corrected reprint of the 1992 edition) | Zbl
[17] Tropical geometry and its applications, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 827-852 | Zbl
[18] The essential skeleton of a degeneration of algebraic varieties, Am. J. Math., Volume 138 (2016) no. 6, pp. 1645-1667 | DOI | MR | Zbl
[19] Analytification is the limit of all tropicalizations, Math. Res. Lett., Volume 16 (2009) no. 3, pp. 543-556 | DOI | MR | Zbl
[20] Au-dessous de Spec , J. -Theory, Volume 3 (2009) no. 3, pp. 437-500 | DOI | MR | Zbl
Cité par Sources :