Cet article introduit les gamma-triangles, qui sont liés aux F-triangles et H-triangles utilisés dans l’étude combinatoire des complexes d’amas, et dont ils sont en quelque sorte une version plus fondamentale. On démontre que les gamma-triangles s’expriment comme des sommes de gamma-vecteurs locaux, introduits par Athanasiadis comme un raffinement des h-vecteurs locaux de subdivisions simpliciales, dûs à Stanley. On calcule ensuite explicitement les gamma-triangles des complexes d’amas de type fini.
This article introduces Gamma-triangles, which are closely related to F-triangles and H-triangles that were used in the combinatorial study of cluster complexes, and in some sense are more fundamental. We prove that Gamma-triangles can be expressed as sums of local gamma-vectors, that were introduced by Athanasiadis as a refinement of the Stanley’s local h-vector of simplicial subdivisions. We compute explicitly the Gamma-triangles for cluster complexes of finite type.
Accepté le :
Publié le :
Frédéric Chapoton 1
@article{AFST_2020_6_29_4_907_0, author = {Fr\'ed\'eric Chapoton}, title = {A note on gamma triangles and local gamma vectors (with an appendix by {Alin} {Bostan)}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {907--925}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {4}, year = {2020}, doi = {10.5802/afst.1649}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1649/} }
TY - JOUR AU - Frédéric Chapoton TI - A note on gamma triangles and local gamma vectors (with an appendix by Alin Bostan) JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 907 EP - 925 VL - 29 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1649/ DO - 10.5802/afst.1649 LA - en ID - AFST_2020_6_29_4_907_0 ER -
%0 Journal Article %A Frédéric Chapoton %T A note on gamma triangles and local gamma vectors (with an appendix by Alin Bostan) %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 907-925 %V 29 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1649/ %R 10.5802/afst.1649 %G en %F AFST_2020_6_29_4_907_0
Frédéric Chapoton. A note on gamma triangles and local gamma vectors (with an appendix by Alin Bostan). Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 4, pp. 907-925. doi : 10.5802/afst.1649. https://afst.centre-mersenne.org/articles/10.5802/afst.1649/
[1] A survey of subdivisions and local -vectors, The mathematical legacy of Richard P. Stanley, American Mathematical Society, 2016, pp. 39-51 | Zbl
[2] The local -vector of the cluster subdivision of a simplex, Sémin. Lothar. Comb., Volume 66 (2011), B66c, 21 pages | MR | Zbl
[3] Actions on permutations and unimodality of descent polynomials, Eur. J. Comb., Volume 29 (2008) no. 2, pp. 514-531 | DOI | MR | Zbl
[4] Some expansions and convolution formulas related to MacMahon’s master theorem, SIAM J. Math. Anal., Volume 8 (1977) no. 2, pp. 320-336 | DOI | MR | Zbl
[5] Enumerative properties of generalized associahedra, Sémin. Lothar. Comb., Volume 51 (2004), B51b, 16 pages | MR | Zbl
[6] Sur le nombre de réflexions pleines dans les groupes de Coxeter finis, Bull. Belg. Math. Soc. Simon Stevin, Volume 13 (2006) no. 4, pp. 585-596 | DOI | Zbl
[7] Stokes posets and serpent nests, Discrete Math. Theor. Comput. Sci., Volume 18 (2016) no. 3, 18, 30 pages | MR | Zbl
[8] Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl
[9] -systems and generalized associahedra, Ann. Math., Volume 158 (2003) no. 3, pp. 977-1018 | DOI | MR | Zbl
[10] Flag subdivisions and -vectors, Pac. J. Math., Volume 259 (2012) no. 2, pp. 257-278 | MR
[11] Real root conjecture fails for five- and higher-dimensional spheres, Discrete Comput. Geom., Volume 34 (2005) no. 2, pp. 269-284 | MR | Zbl
[12] Enumerative properties of Grid-Associahedra (2017) (https://arxiv.org/abs/1705.04901) | Zbl
[13] Local -polynomials, invariants of subdivisions, and mixed Ehrhart theory, Adv. Math., Volume 286 (2016), pp. 181-239 | DOI | MR | Zbl
[14] Combinatorial realization of the Hopf algebra of sashes, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (Discrete Mathematics and Theoretical Computer Science), The Association, 2014, pp. 621-632 | MR | Zbl
[15] Geometric Realizations of the Accordion Complex of a Dissection, Discrete Comput. Geom., Volume 61 (2019) no. 3, pp. 507-540 | DOI | MR | Zbl
[16] Non-kissing complexes and tau-tilting for gentle algebras (2017) (https://arxiv.org/abs/1707.07574)
[17] Cambrian fans, J. Eur. Math. Soc., Volume 11 (2009) no. 2, pp. 407-447 | DOI | MR | Zbl
[18] The zero loci of -triangles, Acta Math. Vietnam., Volume 42 (2017) no. 2, pp. 209-236 | DOI | MR | Zbl
[19] Subdivisions and local -vectors, J. Am. Math. Soc., Volume 5 (1992) no. 4, pp. 805-851 | MR | Zbl
[20] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser, 1996, x+164 pages | MR | Zbl
[21] Some remarks on the joint distribution of descents and inverse descents, Electron. J. Comb., Volume 20 (2013) no. 1, 52, 12 pages | MR | Zbl
Cité par Sources :