On a convex set, we prove that the Poincaré–Sobolev constant for functions vanishing at the boundary can be bounded from above by the ratio between the perimeter and a suitable power of the dimensional measure. This generalizes an old result by Pólya. As a consequence, we obtain the sharp Buser’s inequality (or reverse Cheeger inequality) for the Laplacian on convex sets. This is valid in every dimension and for every . We also highlight the appearing of a subtle phenomenon in shape optimization, as the integrability exponent varies.
Pour un ensemble convexe, on démontre que la constante de Poincaré–Sobolev pour les fonctions qui s’annulent au bord, peut être majorée par le rapport entre le perimétre et une puissance opportune de la mesure dimensionnelle. Ceci généralise un vieux résultat de Pólya. En consequence de ce résultat, on obtient l’inégalité de Buser (ou inégalité inverse de Cheeger) sous forme optimale, pour le Laplacian sur les ensembles convexes. Cela est valable pour toute dimension et tout . On souligne aussi l’apparition d’un phénomène subtil en optimisation de formes, lorsque l’exposant d’intégrabilité varie.
Accepted:
Published online:
Keywords: Buser’s inequality, convex sets, $p-$Laplacian, Cheeger constant, shape optimization
Lorenzo Brasco 1
@article{AFST_2020_6_29_4_977_0, author = {Lorenzo Brasco}, title = {On principal frequencies and isoperimetric ratios in convex sets}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {977--1005}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {4}, year = {2020}, doi = {10.5802/afst.1653}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1653/} }
TY - JOUR AU - Lorenzo Brasco TI - On principal frequencies and isoperimetric ratios in convex sets JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 977 EP - 1005 VL - 29 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1653/ DO - 10.5802/afst.1653 LA - en ID - AFST_2020_6_29_4_977_0 ER -
%0 Journal Article %A Lorenzo Brasco %T On principal frequencies and isoperimetric ratios in convex sets %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 977-1005 %V 29 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1653/ %R 10.5802/afst.1653 %G en %F AFST_2020_6_29_4_977_0
Lorenzo Brasco. On principal frequencies and isoperimetric ratios in convex sets. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 4, pp. 977-1005. doi : 10.5802/afst.1653. https://afst.centre-mersenne.org/articles/10.5802/afst.1653/
[1] Uniqueness of the Cheeger set of a convex body, Nonlinear Anal., Theory Methods Appl., Volume 70 (2009) no. 1, pp. 32-44 | DOI | MR | Zbl
[2] The convexity of a domain and the superharmonicity of the signed distance function, Proc. Am. Math. Soc., Volume 93 (1985) no. 4, pp. 598-600 | DOI | MR | Zbl
[3] Schrödinger operators with negative potentials and Lane-Emden densities, J. Funct. Anal., Volume 274 (2018) no. 6, pp. 1825-1863 | DOI | Zbl
[4] An inequality à la Szegö-Weinberger for the -Laplacian on convex sets, Commun. Contemp. Math., Volume 18 (2016) no. 6, 1550086, 23 pages | Zbl
[5] Compact Sobolev embeddings and torsion functions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 4, pp. 817-843 | DOI | MR | Zbl
[6] A note on the isoperimetric constant, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 2, pp. 213-230 | DOI | Numdam | MR | Zbl
[7] A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton University Press, 1970, pp. 195-199 | Zbl
[8] Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr., Volume 287 (2014) no. 2-3, pp. 194-209 | MR | Zbl
[9] Existence and uniqueness for a -Laplacian nonlinear eigenvalue problem, Electron. J. Differ. Equ., Volume 26 (2010), p. 10 | MR | Zbl
[10] Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin), 48, Springer, 2005, xii+334 pages | Zbl
[11] Generalization of an inequality of G. Pólya concerning the eigenfrequences of vibrating bodies, Publ. Inst. Math., Nouv. Sér., Volume 31 (1982), pp. 65-72 | Zbl
[12] A simple analytic proof of an inequality by P. Buser, Proc. Am. Math. Soc., Volume 121 (1994) no. 3, pp. 951-959 | DOI | MR | Zbl
[13] Spectral gap, logarithmic Sobolev constant, and geometric bounds, Eigenvalues of Laplacians and other geometric operators (Surveys in Differential Geometry), Volume 9, International Press, 2004, pp. 219-240 | MR | Zbl
[14] Numerical approximation of the first eigenpair of the -Laplacian using finite elements and the penalty method, Numer. Funct. Anal. Optim., Volume 18 (1997) no. 3-4, pp. 389-399 | DOI | MR | Zbl
[15] Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, 342, Springer, 2011, xxviii+866 pages | MR | Zbl
[16] Reverse Cheeger inequality for planar convex sets, J. Convex Anal., Volume 24 (2017) no. 1, pp. 107-122 | MR | Zbl
[17] Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc. (N.S.), Volume 24 (1960), pp. 413-419 | MR | Zbl
[18] Counting peaks of solutions to some quasilinear elliptic equations with large exponents, J. Differ. Equations, Volume 117 (1995) no. 1, pp. 28-55 | MR | Zbl
[19] Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and Its Applications, 151, Cambridge University Press, 2014, xxii+736 pages | MR | Zbl
Cited by Sources: