Nous donnons un aperçu des recherches mathématiques de Hiroshi Umemura sur la géométrie algébrique, les équations de Painlevé et la théorie de Galois différentielle.
We give an overview of Umemura’s mathematical research on algebraic geometry, the Painlevé equations and the Galois differential theory.
Kazuo Okamoto 1 ; Yousuke Ohyama 2
@article{AFST_2020_6_29_5_1053_0, author = {Kazuo Okamoto and Yousuke Ohyama}, title = {Mathematical works of {Hiroshi} {Umemura}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1053--1062}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {5}, year = {2020}, doi = {10.5802/afst.1656}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1656/} }
TY - JOUR AU - Kazuo Okamoto AU - Yousuke Ohyama TI - Mathematical works of Hiroshi Umemura JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 1053 EP - 1062 VL - 29 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1656/ DO - 10.5802/afst.1656 LA - en ID - AFST_2020_6_29_5_1053_0 ER -
%0 Journal Article %A Kazuo Okamoto %A Yousuke Ohyama %T Mathematical works of Hiroshi Umemura %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 1053-1062 %V 29 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1656/ %R 10.5802/afst.1656 %G en %F AFST_2020_6_29_5_1053_0
Kazuo Okamoto; Yousuke Ohyama. Mathematical works of Hiroshi Umemura. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 5, pp. 1053-1062. doi : 10.5802/afst.1656. https://afst.centre-mersenne.org/articles/10.5802/afst.1656/
[1] On the definitions of the Painlevé equations, RIMS Kokyuroku, Volume 1296 (2002), pp. 29-34
[2] The Galois groupoid of Picard-Painlevé VI equation, RIMS Kôkyûroku Bessatsu, Volume B2 (2007), pp. 15-20 | MR | Zbl
[3] Grundeigenschaften der Algebraischen Flächen, Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Volume 2 (1915) no. 1, pp. 744-755 | Zbl
[4] Essai sur une théorie générale de l’intégration et sur la classification des transcendantes, Ann. Sci. Éc. Norm. Supér. (1898), pp. 243-384 | DOI | Zbl
[5] Colloque trajectorien à la mémoire de Georges Reeb et Jean-Louis Callot (Strasbourg-Obernai, 1995) (Augustin Fruchard; A. Troesch, eds.), IRMA et C.N.R.S, 1995
[6] Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations, Nagoya Math. J., Volume 159 (2000), pp. 179-200 | DOI | Zbl
[7] Introduction to the Galois theory of Artinian simple module algebras, Geometric and differential Galois theories (Séminaires et Congrès), Volume 27, Société Mathématique de France, 2013, pp. 69-92 | MR
[8] Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics (Monographies de l’Enseignement Mathématique), Volume 2, L’Enseignement Mathématique, 2001, pp. 465-501 | Zbl
[9] Toward quantization of Galois theory, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 5, pp. 1319-1431
[10] Discrete Burgers’ equation, binomial coefficients and mandala, Math. Comput. Sci., Volume 4 (2010) no. 2-3, pp. 151-167 | DOI | MR | Zbl
[11] On a general difference Galois theory. II, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2733-2771 | DOI | Numdam | MR | Zbl
[12] Minimal rational threefolds, Algebraic geometry (Tokyo and Kyoto 1982) (Lecture Notes in Mathematics), Volume 1016, Springer, 1983, pp. 490-518 | DOI | MR | Zbl
[13] A note on the transcendency of Painlevé’s first transcendent, Nagoya Math. J., Volume 109 (1988), pp. 63-67 | DOI | MR | Zbl
[14] Special polynomials associated with the Painlevé equations. II, Integrable systems and algebraic geometry, World Scientific, 1997, pp. 349-372 | Zbl
[15] Leçons sur la théorie analytique des équations différentielles, professées à Stockholm (1895), Hermann, 1897 (Oeuvres I, pp. 199–807) | Zbl
[16] Analyse des Travaux Scientifiques Jusqu’en 1900, Blanchard, 1900 (Oeuvres I, p. 75–196) | Zbl
[17] Sur l’irréductibilité des transcendantes uniformes définies par les équations différentielles du second ordre, C. R. Math. Acad. Sci. Paris, Volume 135 (1902), pp. 411-415 | Zbl
[18] Differential Galois Theory, Mathematics and its Applications, 15, Gordon and Breach Science Publishers, 1983 | MR
[19] Can we quantize Galois theory?, Proceedings of Various aspects of the Painlevé equations (to appear)
[20] Painlevé equations and deformations of rational surfaces with rational double points, Physics and combinatorics (Nagoya, 1999), World Scientific, 2001, pp. 320-365 | DOI | Zbl
[21] Formal moduli for -divisible groups, Nagoya Math. J., Volume 42 (1971), pp. 1-7 | DOI | MR | Zbl
[22] Dimension cohomologique des groupes algébriques commutatifs, Ann. Sci. Éc. Norm. Supér., Volume 5 (1972), pp. 265-276 | DOI | Numdam | MR | Zbl
[23] Fibrés vectoriels positifs sur une courbe elliptique, Bull. Soc. Math. Fr., Volume 100 (1972), pp. 431-433 | DOI | Numdam | MR | Zbl
[24] La dimension cohomologique des surfaces algébriques, Nagoya Math. J., Volume 47 (1972), pp. 155-160 | DOI | MR | Zbl
[25] Cohomological dimension of group schemes, Nagoya Math. J., Volume 52 (1973), pp. 47-52 | DOI | MR | Zbl
[26] Some results in the theory of vector bundles, Nagoya Math. J., Volume 52 (1973), pp. 97-128 | DOI | MR | Zbl
[27] A theorem of Matsushima, Nagoya Math. J., Volume 54 (1974), pp. 123-134 | DOI | MR | Zbl
[28] Stable vector bundles with numerically trivial Chern classes over a hyperelliptic surface, Nagoya Math. J., Volume 59 (1975), pp. 107-134 | DOI | MR | Zbl
[29] On a certain type of vector bundles over an Abelian variety, Nagoya Math. J., Volume 64 (1976), pp. 31-45 | DOI | MR | Zbl
[30] On a property of symmetric products of a curve of genus 2, Proceedings of the International Symposium on Algebraic Geometry (Kyoto, 1977), Kinokuniya Book-Store, 1977, pp. 709-721 | Zbl
[31] On a theorem of Ramanan, Nagoya Math. J., Volume 69 (1978), pp. 131-138 | DOI | MR | Zbl
[32] Moduli spaces of the stable vector bundles over abelian surfaces, Nagoya Math. J., Volume 77 (1980), pp. 47-60 | DOI | MR | Zbl
[33] Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables, Nagoya Math. J., Volume 79 (1980), pp. 47-67 | DOI | MR | Zbl
[34] Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type, Nagoya Math. J., Volume 87 (1982), pp. 59-78 | DOI | MR | Zbl
[35] On the maximal connected algebraic subgroups of the Cremona group. I, Nagoya Math. J., Volume 88 (1982), pp. 213-246 | DOI | MR | Zbl
[36] Algebro-geometric problems arising from Painlevé’s works, Algebraic and Topological Theories –to the memory of Dr. Takehiko MIYATA, Kinokuniya Company Ltd, 1984, pp. 467-495 | Zbl
[37] Resolutions of algebraic equations by theta constants, Tata Lectures on Theta II (Progress in Mathematics), Volume 43, Birkhäuser, 1984 | Zbl
[38] Birational automorphism groups and differential equations, Équations différentielles dans le champ complexe, Vol. II (Strasbourg, 1985) (Publ. Inst. Rech. Math. Av.), Univ. Louis Pasteur, 1985, pp. 119-227
[39] Gino Fano, Sūgaku, Volume 37 (1985), pp. 169-178 | MR | Zbl
[40] On the maximal connected algebraic subgroups of the Cremona group. II, Advanced Studies in Pure Mathematics, 6, North-Holland, 1985 | MR | Zbl
[41] Minimal rational threefolds. II, Nagoya Math. J., Volume 110 (1988), pp. 15-80 | DOI | MR | Zbl
[42] On the irreducibility of Painlevé differential equations, Sūgaku, Volume 40 (1988) no. 1, pp. 47-61 translated in Sugaku Expositions, 2 (1989), p. 231–252.
[43] On the irreducibility of the first differential equation of Painlevé, Algebraic geometry and commutative algebra, Vol. II, Volume 771, Konokuniya Company Ltd, 1988, pp. 771-789 | DOI | Zbl
[44] On classical numbers, Sūgaku, Volume 41 (1989), pp. 1-15 translated in Sugaku Expositions 4 (1991), p. 1–20 | MR | Zbl
[45] On the Lie-Drach-Vessiot theory, Proceeding of symposium on algebraic geometry, 1989, pp. 173-198
[46] Birational automorphism groups and differential equations, Nagoya Math. J., Volume 119 (1990), pp. 1-80 | DOI | MR | Zbl
[47] Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J., Volume 117 (1990), pp. 125-171 | DOI
[48] Classical solutions to Painlevé equations, RIMS Kokyuroku, Volume 857 (1994), pp. 63-80 | Zbl
[49] On a class of numbers generated by differential equations related with algebraic groups, Nagoya Math. J., Volume 133 (1994), pp. 1-55 | DOI | MR
[50] The Painlevé equation and classical functions, Sūgaku, Volume 47 (1995), pp. 341-359 translated in Sugaku Expositions 11 (1998), p. 77–100 | Zbl
[51] Differential Galois theory of infinite dimension, Nagoya Math. J., Volume 144 (1996), pp. 59-135 | DOI | MR | Zbl
[52] Galois theory of algebraic and differential equations, Nagoya Math. J., Volume 144 (1996), pp. 1-58 | DOI | MR | Zbl
[53] Special polynomials associated with the Painlevé equations. I, Ann. Fac. Sci. Toulouse, Math., Volume 29 (1996) no. 5, pp. 1063-1089 (talks in Theory of nonlinear special functions: the Painlevé transcendents)
[54] Lie-Drach-Vessiot theory—infinite-dimensional differential Galois theory, CR-geometry and overdetermined systems (Osaka, 1994) (Advanced Studies in Pure Mathematics), Volume 25, 1997, pp. 364-385 | DOI | MR | Zbl
[55] 100 years of the Painlevé equation, Sūgaku, Volume 51 (1999), pp. 395-420
[56] Lie-Drach-Vessiot theory and Painlevé equations, RIMS Kokyuroku, Volume 1150 (2000), pp. 63-69 | Zbl
[57] On the transformation group of the second Painlevé equation, Nagoya Math. J., Volume 157 (2000), pp. 15-46 | DOI | Zbl
[58] Theory on elliptic functions, University of Tokyo Press, 2000
[59] On the definitions of the Painlevé equations, Proceeding of symposium on algebraic geometry, 2002, pp. 76-83
[60] Monodromy preserving deformation and differential Galois group. I, Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. I (Astérisque), Volume 296, Société Mathématique de France, 2004, pp. 253-269 | Numdam | Zbl
[61] Galois theory and Painlevé equations, Théories asymptotiques et équations de Painlevé (Séminaires et Congrès), Volume 14, Société Mathématique de France, 2006, pp. 299-339 | MR | Zbl
[62] Invitation to Galois theory, Differential equations and quantum groups (IRMA Lectures in Mathematics and Theoretical Physics), Volume 9, European Mathematical Society, 2007, pp. 269-289 | MR | Zbl
[63] Sur l’équivalence des théories de Galois différentielles générales, C. R. Math. Acad. Sci. Paris, Volume 346 (2008), pp. 1155-1158 | DOI | MR
[64] On the definition of the Galois groupoid, Differential equations and singularities (Astérisque), Volume 323, 2009, pp. 441-452 | Numdam | MR | Zbl
[65] Galois: la magnifique théorie de l’ambiguïté, Gendai-Sugakusha, 2011
[66] Picard-Vessiot theory in general Galois theory, Algebraic methods in dynamical systems (Banach Center Publications), Volume 94, Polish Academy of Sciences, 2011, pp. 263-293 | MR | Zbl
[67] Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J., Volume 148 (1997), pp. 151-198 | DOI | Zbl
[68] Solutions of the third Painlevé equation. I, Nagoya Math. J., Volume 151 (1998), pp. 1-24 | DOI | Zbl
[69] Sur la théorie des groupes continus, Ann. Sci. Éc. Norm. Supér., Volume 20 (1903), pp. 411-451 | DOI | Numdam | MR | Zbl
[70] Sur la théorie de Galois et ses diverses généralisations, Ann. Sci. Éc. Norm. Supér., Volume 21 (1904), pp. 9-85 | DOI | Numdam | MR | Zbl
[71] Sur l’intégration des systèmes différentiels qui admettent des groupes continus de transformations, Acta Math., Volume 28 (1904), pp. 307-349 | DOI | Zbl
[72] Sur une théorie générale de la réductibilité des équations et systèmes d’équations finies ou différentielles, Ann. Sci. Éc. Norm. Supér., Volume 63 (1946), pp. 1-22 | DOI | Numdam | MR | Zbl
Cité par Sources :