Dans cet article, nous démontrons des variantes du théorème d’Ax–Lindemann–Weierstrass (ALW) pour des fonctions analytiques satisfaisant des équations différentielles de type « Schwarzienne ». Dans des travaux antérieurs, nous avons prouvé le théorème ALW pour les uniformisantes de groupes fuchsiens de genre zéro. Dans ce travail, nous généralisons ce résultat de plusieurs manières en utilisant des techniques variées provenant de la théorie des modèles, de la théorie de Galois différentielle et de la géométrie complexe.
This paper centers around proving variants of the Ax–Lindemann–Weierstrass (ALW) theorem for analytic functions which satisfy Schwarzian differential equations. In previous work, the authors proved the ALW theorem for the uniformizers of genus zero Fuchsian groups, and in this work, we generalize that result in several ways using a variety of techniques from model theory, differential Galois theory and complex geometry.
David Blázquez-Sanz 1 ; Guy Casale 2 ; James Freitag 3 ; Joel Nagloo 4
@article{AFST_2020_6_29_5_1265_0, author = {David Bl\'azquez-Sanz and Guy Casale and James Freitag and Joel Nagloo}, title = {Some functional transcendence results around the {Schwarzian} differential equation.}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1265--1300}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {5}, year = {2020}, doi = {10.5802/afst.1661}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1661/} }
TY - JOUR AU - David Blázquez-Sanz AU - Guy Casale AU - James Freitag AU - Joel Nagloo TI - Some functional transcendence results around the Schwarzian differential equation. JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 1265 EP - 1300 VL - 29 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1661/ DO - 10.5802/afst.1661 LA - en ID - AFST_2020_6_29_5_1265_0 ER -
%0 Journal Article %A David Blázquez-Sanz %A Guy Casale %A James Freitag %A Joel Nagloo %T Some functional transcendence results around the Schwarzian differential equation. %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 1265-1300 %V 29 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1661/ %R 10.5802/afst.1661 %G en %F AFST_2020_6_29_5_1265_0
David Blázquez-Sanz; Guy Casale; James Freitag; Joel Nagloo. Some functional transcendence results around the Schwarzian differential equation.. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 5, pp. 1265-1300. doi : 10.5802/afst.1661. https://afst.centre-mersenne.org/articles/10.5802/afst.1661/
[1] Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2003 | Zbl
[2] On strongly minimal sets, J. Symb. Log., Volume 36 (1971), pp. 79-96 | DOI | MR | Zbl
[3] On Galois extensions of a maximal cyclotomic field, Math. USSR, Izv., Volume 14 (1980) no. 2, pp. 247-256 | DOI | MR | Zbl
[4] Generalized algebraic theories: a model theorectic approach, Ph. D. Thesis, Massachusetts Institute of Technology (USA) (1968)
[5] Ax–Lindemann–Weierstrass with derivatives and the genus 0 Fuchsian groups, Ann. Math., Volume 192 (2020) no. 3, pp. 721-765 | DOI | MR | Zbl
[6] Strong minimality and the -function, J. Eur. Math. Soc., Volume 20 (2018) no. 1, pp. 119-136 | DOI | MR | Zbl
[7] Maximal Fuchsian groups, Bull. Am. Math. Soc., Volume 69 (1963), pp. 569-573 | DOI | MR | Zbl
[8] Lectures on algebraic model theory, Fields Institute Monographs, 15, American Mathematical Society, 2002 | MR | Zbl
[9] Interpretations and Differential Galois Extensions, Int. Math. Res. Not., Volume 2016 (2016) no. 24, pp. 7390-7413 | DOI | MR | Zbl
[10] On Riemann’s equations which are solvable by quadratures, Funkc. Ekvacioj, Volume 12 (1969), pp. 269-281 | MR | Zbl
[11] Bi-algebraic geometry and the André–Oort conjecture, Algebraic Geometry: Salt Lake City 2015, Part 2 (Utah, 2015) (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society; Clay Mathematics Institute, 2016, pp. 319-360 | Zbl
[12] Galois theory of differential fields, Am. J. Math., Volume 75 (1953) no. 4, pp. 753-824 | DOI | MR | Zbl
[13] Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973 | MR | Zbl
[14] An algorithm for solving second order linear homogeneous differential equations, J. Symb. Comput., Volume 2 (1986), pp. 3-43 | DOI | MR | Zbl
[15] Discontinuous groups and automorphic functions, Mathematical Surveys, 8, American Mathematical Society, 1964 | MR | Zbl
[16] Lectures on Differential Galois Theory, University Lecture Series, 7, American Mathematical Society, 1994 | MR | Zbl
[17] Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 17, Springer, 1990
[18] Strongly minimal sets and geometry, Colloquium ’95 (Haifa) (Lecture Notes in Logic), Volume 11, Springer, 1998, pp. 191-213 | DOI | MR | Zbl
[19] Introduction to model theory, Model theory, algebra, and geometry (Mathematical Sciences Research Institute Publications), Volume 39, Cambridge University Press, 2000, pp. 15-35 | MR | Zbl
[20] Linearity properties of Shimura varieties. I, J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 539-567 | MR | Zbl
[21] Model Theory, Algebra and Differential Equations, Ph. D. Thesis, University of Leeds (UK) (2014) | MR
[22] On the algebraic independence of generic Painlevé transcendents, Compos. Math., Volume 150 (2014) no. 4, pp. 668-678 | DOI | Zbl
[23] On Algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math., Volume 726 (2017), pp. 1-27 | DOI | Zbl
[24] A conjecture of Mahler on automorphic functions, Arch. Math., Volume 53 (1989) no. 1, pp. 46-51 | DOI | MR | Zbl
[25] Leçons de Stokholm (1875), Oeuvres complètes Tome 1, Volume 1, éditions du CNRS, 1972
[26] -minimality and the André–Oort conjecture for , Ann. Math., Volume 173 (2011) no. 3, pp. 1779-1840 | DOI | Zbl
[27] Geometric stability theory, Oxford Logic Guides, 32, Oxford University Press, 1996 | MR | Zbl
[28] Stable embeddedness and NIP, J. Symb. Log., Volume 76 (2011) no. 2, pp. 665-672 | DOI | MR | Zbl
[29] Differential algebra, Colloquium Publications, 33, American Mathematical Society, 1950 | MR | Zbl
[30] On the concept of a differentially closed field, 1959 (Office of Scientific Research, US Air Force) | Zbl
[31] Uniformization of Riemann Surfaces. Revisiting a hundred-year-old-problem, Heritage of European Mathematics, European Mathematical Society, 2016 | Zbl
[32] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan. Kanô Memorial Lectures, 11, Princeton University Press, 1994 | MR | Zbl
[33] Finitely maximal Fuchsian groups, J. Lond. Math. Soc., Volume 6 (1972), pp. 29-38 | DOI | MR | Zbl
[34] Riemann surfaces, Belyi functions and hypermaps, Topics on Riemann surfaces and Fuchsian groups (London Mathematical Society Lecture Note Series), Volume 287, Cambridge University Press, 2001, pp. 43-68 | DOI | MR | Zbl
[35] Arithmetic triangle groups, J. Math. Soc. Japan, Volume 29 (1977), pp. 91-106 | MR | Zbl
[36] On the irreducibility of the first differential equation of Painlevé, Algebraic geometry and commutative algebra. Vol II, Konokuniya Company Ltd., 1988, pp. 771-789 | DOI | Zbl
[37] Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J. (1990) no. 117, pp. 125-171 | DOI | Zbl
[38] Arithmétique des algébres de quaternions, Lecture Notes in Mathematics, 800, Springer, 1980 | Zbl
[39] Hypergeometric Functions, My Love, Aspects of Mathematics, E32, Springer, 1997 | Zbl
[40] Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984 | MR | Zbl
Cité par Sources :