logo AFST
Some functional transcendence results around the Schwarzian differential equation.
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 5, pp. 1265-1300.

This paper centers around proving variants of the Ax–Lindemann–Weierstrass (ALW) theorem for analytic functions which satisfy Schwarzian differential equations. In previous work, the authors proved the ALW theorem for the uniformizers of genus zero Fuchsian groups, and in this work, we generalize that result in several ways using a variety of techniques from model theory, differential Galois theory and complex geometry.

Dans cet article, nous démontrons des variantes du théorème d’Ax–Lindemann–Weierstrass (ALW) pour des fonctions analytiques satisfaisant des équations différentielles de type « Schwarzienne ». Dans des travaux antérieurs, nous avons prouvé le théorème ALW pour les uniformisantes de groupes fuchsiens de genre zéro. Dans ce travail, nous généralisons ce résultat de plusieurs manières en utilisant des techniques variées provenant de la théorie des modèles, de la théorie de Galois différentielle et de la géométrie complexe.

Published online:
DOI: 10.5802/afst.1661
Classification: 11F03,  12H05,  03C60
David Blázquez-Sanz 1; Guy Casale 2; James Freitag 3; Joel Nagloo 4

1 Universidad Nacional de Colombia - Sede Medellín, Facultad de Ciencias, Escuela de Matemáticas, Colombia
2 Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
3 University of Illinois Chicago, Department of Mathematics, Statistics, and Computer Science, 851 S. Morgan Street, Chicago, IL, USA, 60607-7045.
4 CUNY Bronx Community College, Department of Mathematics and Computer Science, Bronx, NY 10453, and CUNY Graduate Center, Ph.D. programs in Mathematics, 365 Fifth Avenue, New York, NY 10016, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2020_6_29_5_1265_0,
     author = {David Bl\'azquez-Sanz and Guy Casale and James Freitag and Joel Nagloo},
     title = {Some functional transcendence results around the {Schwarzian} differential equation.},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1265--1300},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {5},
     year = {2020},
     doi = {10.5802/afst.1661},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1661/}
}
TY  - JOUR
AU  - David Blázquez-Sanz
AU  - Guy Casale
AU  - James Freitag
AU  - Joel Nagloo
TI  - Some functional transcendence results around the Schwarzian differential equation.
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
DA  - 2020///
SP  - 1265
EP  - 1300
VL  - 29
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1661/
UR  - https://doi.org/10.5802/afst.1661
DO  - 10.5802/afst.1661
LA  - en
ID  - AFST_2020_6_29_5_1265_0
ER  - 
%0 Journal Article
%A David Blázquez-Sanz
%A Guy Casale
%A James Freitag
%A Joel Nagloo
%T Some functional transcendence results around the Schwarzian differential equation.
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 1265-1300
%V 29
%N 5
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1661
%R 10.5802/afst.1661
%G en
%F AFST_2020_6_29_5_1265_0
David Blázquez-Sanz; Guy Casale; James Freitag; Joel Nagloo. Some functional transcendence results around the Schwarzian differential equation.. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 5, pp. 1265-1300. doi : 10.5802/afst.1661. https://afst.centre-mersenne.org/articles/10.5802/afst.1661/

[1] Mark J. Ablowitz; Athanassios S. Fokas Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2003 | Zbl

[2] John T. Baldwin; Alistair H. Lachlan On strongly minimal sets, J. Symb. Log., Volume 36 (1971), pp. 79-96 | DOI | MR | Zbl

[3] Gennadii V Belyĭ On Galois extensions of a maximal cyclotomic field, Math. USSR, Izv., Volume 14 (1980) no. 2, pp. 247-256 | DOI | MR | Zbl

[4] L. Blum Generalized algebraic theories: a model theorectic approach, Ph. D. Thesis, Massachusetts Institute of Technology (USA) (1968)

[5] Guy Casale; James Freitag; Joel Nagloo Ax–Lindemann–Weierstrass with derivatives and the genus 0 Fuchsian groups, Ann. Math., Volume 192 (2020) no. 3, pp. 721-765 | DOI | MR | Zbl

[6] James Freitag; Thomas Scanlon Strong minimality and the j-function, J. Eur. Math. Soc., Volume 20 (2018) no. 1, pp. 119-136 | DOI | MR | Zbl

[7] Leon Greenberg Maximal Fuchsian groups, Bull. Am. Math. Soc., Volume 69 (1963), pp. 569-573 | DOI | MR | Zbl

[8] Bradd Hart; Matthew Valeriote Lectures on algebraic model theory, Fields Institute Monographs, 15, American Mathematical Society, 2002 | MR | Zbl

[9] Moshe Kamensky; Anand Pillay Interpretations and Differential Galois Extensions, Int. Math. Res. Not., Volume 2016 (2016) no. 24, pp. 7390-7413 | DOI | MR | Zbl

[10] Tosihusa Kimura On Riemann’s equations which are solvable by quadratures, Funkc. Ekvacioj, Volume 12 (1969), pp. 269-281 | MR | Zbl

[11] Bruno Klingler; Emmanuel Ullmo; Andrei Yafaev Bi-algebraic geometry and the André–Oort conjecture, Algebraic Geometry: Salt Lake City 2015, Part 2 (Utah, 2015) (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society; Clay Mathematics Institute, 2016, pp. 319-360 | Zbl

[12] Ellis R. Kolchin Galois theory of differential fields, Am. J. Math., Volume 75 (1953) no. 4, pp. 753-824 | DOI | MR | Zbl

[13] Ellis R. Kolchin Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973 | MR | Zbl

[14] Jerald J. Kovacic An algorithm for solving second order linear homogeneous differential equations, J. Symb. Comput., Volume 2 (1986), pp. 3-43 | DOI | MR | Zbl

[15] Joseph Lehner Discontinuous groups and automorphic functions, Mathematical Surveys, 8, American Mathematical Society, 1964 | MR | Zbl

[16] Andy R. Magid Lectures on Differential Galois Theory, University Lecture Series, 7, American Mathematical Society, 1994 | MR | Zbl

[17] Grigoriĭ A. Margulis Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 17, Springer, 1990

[18] David Marker Strongly minimal sets and geometry, Colloquium ’95 (Haifa) (Lecture Notes in Logic), Volume 11, Springer, 1998, pp. 191-213 | DOI | MR | Zbl

[19] David Marker Introduction to model theory, Model theory, algebra, and geometry (Mathematical Sciences Research Institute Publications), Volume 39, Cambridge University Press, 2000, pp. 15-35 | MR | Zbl

[20] Ben Moonen Linearity properties of Shimura varieties. I, J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 539-567 | MR | Zbl

[21] Joel Nagloo Model Theory, Algebra and Differential Equations, Ph. D. Thesis, University of Leeds (UK) (2014) | MR

[22] Joel Nagloo; Anand Pillay On the algebraic independence of generic Painlevé transcendents, Compos. Math., Volume 150 (2014) no. 4, pp. 668-678 | DOI | Zbl

[23] Joel Nagloo; Anand Pillay On Algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math., Volume 726 (2017), pp. 1-27 | DOI | Zbl

[24] Keiji Nishioka A conjecture of Mahler on automorphic functions, Arch. Math., Volume 53 (1989) no. 1, pp. 46-51 | DOI | MR | Zbl

[25] Paul Painlevé Leçons de Stokholm (1875), Oeuvres complètes Tome 1, Volume 1, éditions du CNRS, 1972

[26] Jonathan Pila o-minimality and the André–Oort conjecture for n , Ann. Math., Volume 173 (2011) no. 3, pp. 1779-1840 | DOI | Zbl

[27] Anand Pillay Geometric stability theory, Oxford Logic Guides, 32, Oxford University Press, 1996 | MR | Zbl

[28] Anand Pillay Stable embeddedness and NIP, J. Symb. Log., Volume 76 (2011) no. 2, pp. 665-672 | DOI | MR | Zbl

[29] Joseph Ritt Differential algebra, Colloquium Publications, 33, American Mathematical Society, 1950 | MR | Zbl

[30] A. Robinson On the concept of a differentially closed field, 1959 (Office of Scientific Research, US Air Force) | Zbl

[31] Henri P. de Saint-Gervais Uniformization of Riemann Surfaces. Revisiting a hundred-year-old-problem, Heritage of European Mathematics, European Mathematical Society, 2016 | Zbl

[32] Goro Shimura Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan. Kanô Memorial Lectures, 11, Princeton University Press, 1994 | MR | Zbl

[33] David Singerman Finitely maximal Fuchsian groups, J. Lond. Math. Soc., Volume 6 (1972), pp. 29-38 | DOI | MR | Zbl

[34] David Singerman Riemann surfaces, Belyi functions and hypermaps, Topics on Riemann surfaces and Fuchsian groups (London Mathematical Society Lecture Note Series), Volume 287, Cambridge University Press, 2001, pp. 43-68 | DOI | MR | Zbl

[35] Kisao Takeuchi Arithmetic triangle groups, J. Math. Soc. Japan, Volume 29 (1977), pp. 91-106 | MR | Zbl

[36] Hiroshi Umemura On the irreducibility of the first differential equation of Painlevé, Algebraic geometry and commutative algebra. Vol II, Konokuniya Company Ltd., 1988, pp. 771-789 | DOI | Zbl

[37] Hiroshi Umemura Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J. (1990) no. 117, pp. 125-171 | DOI | Zbl

[38] Marie-France Vignéras Arithmétique des algébres de quaternions, Lecture Notes in Mathematics, 800, Springer, 1980 | Zbl

[39] Masaaki Yoshida Hypergeometric Functions, My Love, Aspects of Mathematics, E32, Springer, 1997 | Zbl

[40] Robert J. Zimmer Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984 | MR | Zbl

Cited by Sources: