We make the classical Dickenstein–Sessa canonical representation in local moderate cohomology explicit by an integral formula. We also provide a similar representation of the higher local moderate cohomology groups.
Nous faisons la représentation canonique classique de Dickenstein–Sessa dans la cohomologie modérée locale explicite par une formule intégrale. Nous fournissons également une représentation similaire des groupes de cohomologie modérés locaux supérieurs.
Accepted:
Published online:
Keywords: moderate cohomology, integral representation, residue current, coherent ideal sheaf, complex space
Håkan Samuelsson Kalm 1
@article{AFST_2021_6_30_1_117_0, author = {H\r{a}kan Samuelsson Kalm}, title = {Integral representation of moderate cohomology}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {117--137}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {1}, year = {2021}, doi = {10.5802/afst.1668}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1668/} }
TY - JOUR AU - Håkan Samuelsson Kalm TI - Integral representation of moderate cohomology JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 117 EP - 137 VL - 30 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1668/ DO - 10.5802/afst.1668 LA - en ID - AFST_2021_6_30_1_117_0 ER -
%0 Journal Article %A Håkan Samuelsson Kalm %T Integral representation of moderate cohomology %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 117-137 %V 30 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1668/ %R 10.5802/afst.1668 %G en %F AFST_2021_6_30_1_117_0
Håkan Samuelsson Kalm. Integral representation of moderate cohomology. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 1, pp. 117-137. doi : 10.5802/afst.1668. https://afst.centre-mersenne.org/articles/10.5802/afst.1668/
[1] Integral representation with weights. I, Math. Ann., Volume 326 (2003) no. 1, pp. 1-18 | DOI | MR | Zbl
[2] Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Volume 128 (2004) no. 6, pp. 481-512 | DOI | MR | Zbl
[3] Residues of holomorphic sections and Lelong currents, Ark. Mat., Volume 43 (2005) no. 2, pp. 201-219 | DOI | MR | Zbl
[4] Integral representation with weights. II. Division and interpolation, Math. Z., Volume 254 (2006) no. 2, pp. 315-332 | DOI | MR | Zbl
[5] Uniqueness and factorization of Coleff–Herrera currents, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 4, pp. 651-661 | DOI | Numdam | MR | Zbl
[6] Coleff-Herrera currents, duality, and Noetherian operators, Bull. Soc. Math. Fr., Volume 139 (2011) no. 4, pp. 535-554 | DOI | Numdam | MR | Zbl
[7] The -equation on a non-reduced analytic space, Math. Ann., Volume 374 (2019) no. 1-2, pp. 553-599 | DOI | MR | Zbl
[8] A Dolbeault–Grothendieck lemma on complex spaces via Koppelman formulas, Invent. Math., Volume 190 (2012) no. 2, pp. 261-297 | DOI | MR | Zbl
[9] Residue currents with prescribed annihilator ideals, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 6, pp. 985-1007 | DOI | Numdam | MR | Zbl
[10] Decomposition of residue currents, J. Reine Angew. Math., Volume 638 (2010), pp. 103-118 | MR | Zbl
[11] Direct images of semi-meromorphic currents, Ann. Inst. Fourier, Volume 68 (2018) no. 2, pp. 875-900 | DOI | Numdam | MR | Zbl
[12] Le faisceau sur un espace analytique de dimension pure, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977) (Lecture Notes in Mathematics), Volume 670, Springer, 1978, pp. 187-204 | DOI | MR | Zbl
[13] Analytic -modules and applications, Mathematics and its Applications, 247, Kluwer Academic Publishers Group, Dordrecht, 1993, xiv+581 pages | MR | Zbl
[14] Residues and -modules, The legacy of Niels Henrik Abel, Springer, 2004, pp. 605-651 | DOI | Zbl
[15] Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, 633, Springer, 1978, x+211 pages | Zbl
[16] Courants résiduels et classe fondamentale, Bull. Sci. Math., Volume 119 (1995) no. 1, pp. 85-94 | Zbl
[17] Canonical representatives in moderate cohomology, Invent. Math., Volume 80 (1985) no. 3, pp. 417-434 | DOI | MR | Zbl
[18] Résidus de formes méromorphes et cohomologie modérée, Géométrie complexe (Paris, 1992) (Actualités Sci. Indust.), Volume 1438, Hermann, 1996, pp. 35-59 | Zbl
[19] Residues and principal values on complex spaces, Math. Ann., Volume 194 (1971), pp. 259-294 | DOI | MR | Zbl
[20] The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften, 256, Springer, 1990, xii+440 pages (Distribution theory and Fourier analysis) | MR | Zbl
[21] Various approaches to products of residue currents, J. Funct. Anal., Volume 264 (2013) no. 1, pp. 118-138 | DOI | MR | Zbl
[22] Residue currents and fundamental cycles, Indiana Univ. Math. J., Volume 67 (2018) no. 3, pp. 1085-1114 | DOI | MR | Zbl
[23] Explicit Serre duality on complex spaces, Adv. Math., Volume 305 (2017), pp. 1320-1355 | DOI | MR | Zbl
[24] The -equation, duality, and holomorphic forms on a reduced complex space, J. Geom. Anal., Volume 31 (2021) no. 2, pp. 1786-1820 | DOI | MR | Zbl
Cited by Sources: