In this note we report on some recent progress [10, 11, 12] about the study of global minimizers of a continuum Landau–De Gennes energy functional for nematic liquid crystals in three-dimensional domains. First, we discuss absence of singularities for minimizing configurations under norm constraint, as well as absence of the isotropic phase for the unconstrained minimizers, together with the related biaxial escape phenomenon. Then, under suitable assumptions on the topology of the domain and on the Dirichlet boundary condition, we show that smoothness of energy minimizing configurations yields the emergence of nontrivial topological structure in their biaxiality level sets. Then, we discuss the previous properties under both the norm constraint and an axial symmetry constraint, showing that in this case only partial regularity is available, away from a finite set located on the symmetry axis. In addition, we show that singularities may appear due to energy efficiency and we describe precisely the asymptotic profile around singular points. Finally, in an appropriate class of domains and boundary data we obtain qualitative properties of the biaxial surfaces, showing that smooth minimizers exibit torus structure, as predicted in [16, 24, 25, 39].
Dans cette note, nous présentons des avancées récentes [10, 11, 12] sur l’etude des minimiseurs globaux d’une énergie continue de Landau–De Gennes dans des domaines 3D utilisée dans la modélisation des cristaux liquides nématiques.Dans un premier temps, nous décrivons l’absence de singularités des configurations minimisantes sous contrainte de norme, ainsi que l’absence de phase isotrope pour les minimiseurs non contraints, et le phénomène de fuite biaxiale en résultant. Sous certaines hypothèses sur la topologie du domaine et la condition de Dirichlet au bord, nous montrons ensuite comment la régularité / absence de phase isotrope des configurations minimisantes permet de déduire une structure topologique non triviale des ensembles de niveau de la biaxialité. Enfin, nous discutons ces mêmes proprietés pour des minimiseurs sous contrainte de symétrie axiale et sous contrainte de norme. Dans ce dernier cas, nous montrons que les minimiseurs ne satisfont qu’une régularité partielle, à savoir la régularité en dehors d’un ensemble fini situé sur l’axe de symétrie. De plus, nous démontrons que ces singularités ponctuelles peuvent en effet exister pour des raisons énergétiques, et nous décrivons en détails le comportement asymptotique des minimiseurs près de ces points singuliers. Pour terminer, nous donnons quelques propriétés qualitatives des surfaces de biaxialité pour une classe de domaines et de données au bord montrant que les minimiseurs réguliers présentent une structure en tore biaxial comme celle prédite dans [16, 24, 25, 39].
Adriano Pisante 1
@article{AFST_2021_6_30_2_301_0, author = {Adriano Pisante}, title = {Torus-like solutions for the {Landau{\textendash}De} {Gennes} model.}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {301--326}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {2}, year = {2021}, doi = {10.5802/afst.1676}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1676/} }
TY - JOUR AU - Adriano Pisante TI - Torus-like solutions for the Landau–De Gennes model. JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 301 EP - 326 VL - 30 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1676/ DO - 10.5802/afst.1676 LA - en ID - AFST_2021_6_30_2_301_0 ER -
%0 Journal Article %A Adriano Pisante %T Torus-like solutions for the Landau–De Gennes model. %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 301-326 %V 30 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1676/ %R 10.5802/afst.1676 %G en %F AFST_2021_6_30_2_301_0
Adriano Pisante. Torus-like solutions for the Landau–De Gennes model.. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 2, pp. 301-326. doi : 10.5802/afst.1676. https://afst.centre-mersenne.org/articles/10.5802/afst.1676/
[1] Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples, and bounds, Ann. Math., Volume 128 (1988) no. 3, pp. 483-530 | DOI | MR | Zbl
[2] Harmonic morphisms between Riemannian Manifolds, London Mathematical Society Monographs, 29, London Mathematical Society, 2003 | MR | Zbl
[3] Liquid crystals and their defects, Mathematical thermodynamcis of complex fluids (Cetraro, Italy, June 2015) (Lecture Notes in Mathematics), Volume 2200, Springer, 2017, pp. 1-46 | DOI | MR
[4] Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., Volume 202 (2011) no. 2, pp. 493-535 | DOI | MR | Zbl
[5] Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986), pp. 649-705 | DOI | MR | Zbl
[6] Minimal immersions of surfaces in Euclidean spheres, J. Differ. Geom., Volume 1 (1967), pp. 111-125 | MR | Zbl
[7] Regularity of harmonic maps, Commun. Pure Appl. Math., Volume 52 (1999) no. 9, pp. 1099-1111 | DOI | MR
[8] Biaxial escape in nematics at low temperature, J. Funct. Anal., Volume 272 (2017) no. 10, pp. 3987-3997 | DOI | MR | Zbl
[9] Point and ring defects in nematics under capillary confinement, J. Chem. Phys., Volume 127 (2007), 104902 | DOI
[10] Torus-like solutions for the Landau–De Gennes model. Part II: topology of -equivariant minimizers (https://arxiv.org/abs/2008.13676)
[11] Torus-like solutions for the Landau–De Gennes model. Part III: torus solutions vs split solutions (in preparation)
[12] Torus like solutions for the Landau–De Gennes model. Part I: The Lyuksyutov regime, Arch. Ration. Mech. Anal., Volume 239 (2021), pp. 599-678 | DOI | MR | Zbl
[13] Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 116 (1991) no. 2, pp. 101-113 | DOI | MR | Zbl
[14] Scaling and limits of Landau-de Gennes models for liquid crystals: a comment on some recent analytical papers, Math. Model. Anal., Volume 23 (2018), pp. 414-432 | DOI | MR
[15] Instability of radial hedgehog configurations in nematic liquid crystals under Landau-de Gennes free-energy models, Phys. Rev. E, Volume 59 (1999), pp. 563-567 | DOI
[16] Fine structure of defects in radial nematic droplets, Phys. Rev. E, Volume 62 (2000), pp. 6694-6705
[17] The Physics of Liquid Crystals, International Series of Monographs on Physics, 83, Clarendon Press, 1993
[18] Existence and partial regularity of static liquid crystal configurations, Commun. Math. Phys., Volume 105 (1986), pp. 547-570 | DOI | MR | Zbl
[19] A remark on mappings, Manuscr. Math., Volume 56 (1986), pp. 1-10 | DOI | Zbl
[20] Uniaxial versus biaxial character of nematic equilibria in three dimensions, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2, 55, 22 pages | MR | Zbl
[21] Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3390-3425 | DOI | MR | Zbl
[22] Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 2, pp. 633-673 | DOI | MR | Zbl
[23] Defects in liquid crystals, Rep. Prog. Phys., Volume 52 (1989), pp. 267-311 | DOI | MR
[24] Universal fine structure of nematic hedgehogs, J. Phys. A, Math. Gen., Volume 34 (2001) no. 4, pp. 829-838 | DOI | MR | Zbl
[25] Biaxial torus around nematic point defects, Phys. Rev. E, Volume 60 (1999), pp. 1858-1866 | DOI
[26] Uniaxial symmetry in nematic liquid crystals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 5, pp. 1125-1144 | DOI | Numdam | MR | Zbl
[27] Defects in Liquid Crystals: Computer Simulations, Theory and Experiments (Oleg D. Lavrentovich; Paolo Pasini; Claudio Zannoni; Slobodan Žumer, eds.), NATO Science Series II: Mathematics, Physics and Chemistry, 43, Springer, 2012
[28] Surfaces minimales et la construction de Calabi-Penrose, Séminaire Bourbaki 1983/84 (Astérisque), Volume 121-122, Société Mathématique de France, 1985, pp. 197-211 | Numdam | Zbl
[29] Applications harmoniques de surfaces Riemanniennes, J. Differ. Geom., Volume 13 (1978), pp. 51-78 | MR | Zbl
[30] On nematic liquid crystals with variable degree of orientation, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 453-468 | MR | Zbl
[31] The analysis of harmonic maps and their heat flows, World Scientific, 2008 | Zbl
[32] Une propriété topologique des sous-ensembles analytiques réels, Les Équations aux Dérivées Partielles (Paris, 1962) (Colloques internat.), Volume 117, Éditions du Centre National de la Recherche Scientifique, 1962, pp. 87-89 | Zbl
[33] Partial Hölder Continuity for Minima of Certain Energies among Maps into a Riemannian Manifold, Indiana Univ. Math. J., Volume 37 (1988) no. 2, pp. 349-367 | DOI | Zbl
[34] Topological instability of singularities at small distances in nematics, Zh. Eksp. Teor. Fiz, Volume 75 (1978), pp. 358-360 | MR
[35] The radial-hedgehog solution in Landau-de Gennes theory for nematic liquid crystals, Eur. J. Appl. Math., Volume 23 (2012) no. 1, pp. 61-97 | DOI | MR | Zbl
[36] Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond, Arch. Ration. Mech. Anal., Volume 196 (2010) no. 1, pp. 227-280 | DOI | MR | Zbl
[37] Multiple integrals in the calculus of variations, Grundlehren der Mathematischen Wissenschaften, 130, Springer, 1966 | MR | Zbl
[38] Introduction to Q-tensor theory (2014) (https://arxiv.org/abs/1409.3542)
[39] Fine structure of point defects and soliton decay in nematic liquid crystals, J. Phys. France, Volume 50 (1989), pp. 1027-1040 | DOI
[40] Variationally harmonic maps with general boundary conditions: boundary regularity, Calc. Var. Partial Differ. Equ., Volume 25 (2006) no. 4, pp. 409-429 | DOI | MR | Zbl
[41] Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) (Mathematical Sciences Research Institute Publications), Volume 2, Springer, 1983, pp. 321-358 | DOI | MR | Zbl
[42] A regularity theory for harmonic maps, J. Differ. Geom., Volume 17 (1982), pp. 307-335 | MR | Zbl
[43] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., Volume 18 (1983), pp. 253-268 | MR | Zbl
[44] Regularity of minimizing harmonic maps into the sphere, Invent. Math., Volume 78 (1984), pp. 89-100 | DOI | MR | Zbl
[45] Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics, Birkhäuser, 2012 | Zbl
[46] Variational theories for liquid crystals, Applied Mathematics and Mathematical Computation, 8, CRC Press, 1995 | Zbl
Cited by Sources: