Given a compact connected -dimensional Riemannian manifold, we investigate the smoothness of the optimal transport map between the smooth densities with respect to the squared Riemannian distance cost. The optimal map is characterized by , where the potential function satisfies a Monge–Ampère type equation. Delanoë [7] showed the smoothness of on the Riemannian surfaces when the scalar curvature is close to in norm. In this work, we study the regularity issue on Riemannian manifolds with curvature sufficiently close to curvature of round sphere in norm in all dimensions and prove that the -curvature on such Riemannian manifolds satisfies an improved Ma-Trudinger-Wang condition and the Jacobian of the exponential map is positive. As a consequence, we imply the smoothness of the optimal transport map by the continuity method.
Etant donné une variété riemannienne compacte connexe de dimension , nous étudions la régularité de l’application du transport optimal entre les densités lisses par rapport au coût de la distance riemannienne au carré. L’application du transport optimal est caractérisée par , où la fonction potentielle satisfait une équation de type Monge–Ampère. Delanoë [7] a montré la régularité de sur les surfaces riemanniennes lorsque la courbure scalaire est proche de dans la norme . Dans ce travail, nous étudions le problème de régularité sur les variétés riemanniennes avec courbure suffisamment proche de la courbure de la sphère usuelle dans la norme en toutes les dimensions et prouvons que la -courbure sur de telles variétés riemanniennes satisfait une condition Ma-Trudinger-Wang améliorée et le jacobien de l’application exponentielle est strictement positive. Par conséquent, nous impliquons la régularité de l’application du transport optimal par la méthode de continuité.
Keywords: regularity, optimal transport maps
Mot clés : régularité, application du transport optimal
Yuxin Ge 1; Jian Ye 2
@article{AFST_2021_6_30_2_353_0, author = {Yuxin Ge and Jian Ye}, title = {Regularity of optimal transport maps on locally nearly spherical manifolds}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {353--409}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {2}, year = {2021}, doi = {10.5802/afst.1678}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1678/} }
TY - JOUR AU - Yuxin Ge AU - Jian Ye TI - Regularity of optimal transport maps on locally nearly spherical manifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 353 EP - 409 VL - 30 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1678/ DO - 10.5802/afst.1678 LA - en ID - AFST_2021_6_30_2_353_0 ER -
%0 Journal Article %A Yuxin Ge %A Jian Ye %T Regularity of optimal transport maps on locally nearly spherical manifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 353-409 %V 30 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1678/ %R 10.5802/afst.1678 %G en %F AFST_2021_6_30_2_353_0
Yuxin Ge; Jian Ye. Regularity of optimal transport maps on locally nearly spherical manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 2, pp. 353-409. doi : 10.5802/afst.1678. https://afst.centre-mersenne.org/articles/10.5802/afst.1678/
[1] Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417 | DOI | MR | Zbl
[2] Riemannian Geometry, Mathematics: Theory & Applications, Birkhäuser, 1992 | Zbl
[3] Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115, Academic Press Inc., 1984 | MR | Zbl
[4] Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, 9, North-Holland, 1975 | MR | Zbl
[5] Sur le transport de mesures périodiques, C. R. Math. Acad. Sci. Paris, Volume 329 (1999) no. 3, pp. 199-202 | DOI | MR | Zbl
[6]
(private communication)[7] On the smoothness of the potential function in Riemannian optimal transport, Commun. Anal. Geom., Volume 23 (2015) no. 1, pp. 11-89 | DOI | MR | Zbl
[8] Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds, J. Reine Angew. Math., Volume 646 (2010), pp. 65-115 | Zbl
[9] Locally nearly spherical surfaces are almost-positively curved, Methods Appl. Anal., Volume 18 (2011), pp. 269-302 | MR | Zbl
[10] Positively curved riemannian locally symmetric spaces are positively squared distance curved, Can. J. Math., Volume 65 (2013) no. 4, pp. 757-767 | DOI | MR | Zbl
[11] Existence, uniqueness, and regularity of optimal transport maps, SIAM J. Math. Anal., Volume 39 (2007) no. 1, pp. 126-137 | DOI | MR | Zbl
[12] Hölder continuity and injectivity of optimal transport maps, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 747-795 | DOI | Zbl
[13] Regularity of optimal transport maps on multiple products of spheres, J. Eur. Math. Soc., Volume 15 (2013) no. 4, pp. 1131-1166 | DOI | MR | Zbl
[14] Continuity of optimal transport maps on small deformations of , Commun. Pure Appl. Math., Volume 62 (2009) no. 12, pp. 1670-1706 | DOI | Zbl
[15] On the Ma-Trudinger-Wang curvature on surfaces, Calc. Var. Partial Differ. Equ., Volume 39 (2010) no. 3-4, pp. 307-332 | DOI | MR | Zbl
[16] Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Tôhoku Math. J., Volume 63 (2011), pp. 855-876 | MR | Zbl
[17] Nearly round spheres look convex, Am. J. Math., Volume 134 (2012) no. 1, pp. 109-139 | DOI | MR | Zbl
[18] Riemannian Geometry, Universitext, Springer, 1990 | Zbl
[19] Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, 224, Springer, 1977 | MR | Zbl
[20] On a problem of Monge, Usp. Mat. Nauk, Volume 3 (2006) no. 2, pp. 225-226 (English translation in J. Math. Sci., New York 133, no. 4, p. 13-83) | Zbl
[21] Counterexamples to continuity of optimal transportation on positively curved Riemannian manifolds, Int. Math. Res. Not., Volume 2008 (2008), rnn120, 15 pages | MR | Zbl
[22] Continuity, curvature, and the general covariance of optimal transportation, J. Eur. Math. Soc., Volume 12 (2010) no. 4, pp. 1009-1040 | MR | Zbl
[23] Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular), J. Reine Angew. Math., Volume 664 (2012), pp. 1-27 | MR | Zbl
[24] New computable necessary conditions for the regularity theory of optimal transportation, SIAM J. Math. Anal., Volume 42 (2010) no. 6, pp. 3054-3075 | MR | Zbl
[25] New examples satisfying Ma-Trudinger-Wang conditions, SIAM J. Math. Anal., Volume 44 (2012) no. 1, pp. 61-73 | MR | Zbl
[26] Hölder regularity of optimal mappings in optimal transportation, Calc. Var. Partial Differ. Equ., Volume 34 (2009) no. 4, pp. 435-451 | MR | Zbl
[27] Interior regularity for potential functions in optimal transportation, Commun. Partial Differ. Equations, Volume 35 (2010) no. 1, pp. 165-184 | MR | Zbl
[28] On the regularity of solutions of optimal transportation problems, Acta Math., Volume 202 (2009) no. 2, pp. 241-283 | DOI | MR | Zbl
[29] Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 1, pp. 269-289 | DOI | MR | Zbl
[30] Regularity of optimal transport in curved geometry: the nonfocal case, Duke Math. J., Volume 151 (2010) no. 3, pp. 431-485 | MR | Zbl
[31] Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 2, pp. 151-183 | MR | Zbl
[32] Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001) no. 3, pp. 589-608 | DOI | MR | Zbl
[33] Toponogov’s Theorem and Applications, Lecture Notes, Trieste, 1989
[34] Mémoire sur la théorie des déblais et remblais, Mémoires de l’Académie Royale des Sciences de Paris, 1781
[35] On the second boundary value problem for Monge-Ampère type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (2009) no. 1, pp. 143-174 | Numdam | Zbl
[36] Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009 | Zbl
Cited by Sources: