The Euler–Korteweg system is a dispersive perturbation of the usual compressible Euler equations. In dimension at least three, under a natural stability condition on the pressure, the author proved with B. Haspot that the Cauchy problem is globally well-posed for small, smooth, irrotational initial data. As a continuation of this work, we prove that if the initial velocity has a small rotational part, there exists a lower bound on the time of existence that depends only on some norm of this rotational part. In the zero vorticity limit we recover the previous global well-posedness result.
Independently of this analysis, we also provide (in a special case) a simple example of solution that blows up in finite time.
Le système d’Euler–Korteweg est une perturbation dispersive du système d’Euler compressible classique. En dimension 3 et plus, sous une condition naturelle de stabilité de la pression, l’auteur a prouvé avec B. Haspot la nature globalement bien posée du problème pour des données initiales petites et irrotationnnelles. On continue ici ce travail en considérant le cas de données avec une petite composante rotationnelle, on prouve une borne inférieure sur le temps d’existence qui ne dépend que de cette composante. Dans la limite irrotationnelle on retrouve le résultat précédent d’existence globale.
Indépendamment, on construit dans un cas particulier des solutions devenant singulières en temps fini.
Accepted:
Published online:
Corentin Audiard 1
@article{AFST_2021_6_30_5_1139_0, author = {Corentin Audiard}, title = {On the time of existence of solutions of the {Euler{\textendash}Korteweg} system}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1139--1183}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {5}, year = {2021}, doi = {10.5802/afst.1696}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1696/} }
TY - JOUR AU - Corentin Audiard TI - On the time of existence of solutions of the Euler–Korteweg system JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 1139 EP - 1183 VL - 30 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1696/ DO - 10.5802/afst.1696 LA - en ID - AFST_2021_6_30_5_1139_0 ER -
%0 Journal Article %A Corentin Audiard %T On the time of existence of solutions of the Euler–Korteweg system %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 1139-1183 %V 30 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1696/ %R 10.5802/afst.1696 %G en %F AFST_2021_6_30_5_1139_0
Corentin Audiard. On the time of existence of solutions of the Euler–Korteweg system. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 5, pp. 1139-1183. doi : 10.5802/afst.1696. https://afst.centre-mersenne.org/articles/10.5802/afst.1696/
[1] Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 5, pp. 1149-1238 | DOI | MR
[2] On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., Volume 287 (2009) no. 2, pp. 657-686 | DOI | MR
[3] Small energy traveling waves for the Euler–Korteweg system, Nonlinearity, Volume 30 (2017) no. 9, pp. 3362-3399 | DOI
[4] Global Well-Posedness of the Euler–Korteweg System for Small Irrotational Data, Commun. Math. Phys., Volume 351 (2017) no. 1, pp. 201-247 | DOI | MR
[5] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | DOI | MR
[6] Long wave asymptotics for the Euler–Korteweg system, Rev. Mat. Iberoam., Volume 34 (2018) no. 1, pp. 245-304 | DOI | MR
[7] Well-posedness of one-dimensional Korteweg models, Electron. J. Differ. Equ. (2006), 59, 35 pages | MR
[8] On the well-posedness for the Euler–Korteweg model in several space dimensions, Indiana Univ. Math. J., Volume 56 (2007), pp. 1499-1579
[9] Structure of Korteweg models and stability of diffuse interfaces, Interfaces Free Bound., Volume 7 (2005) no. 4, pp. 371-414 | DOI
[10] Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer, 1976, x+207 pages | MR
[11] On the linear wave regime of the Gross–Pitaevskii equation., J. Anal. Math., Volume 110 (2010), pp. 297-338 | DOI | Zbl
[12] On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equations, Volume 28 (2003) no. 3-4, pp. 843-868 | DOI | MR
[13] On Navier–Stokes–Korteweg and Euler–Korteweg Systems: Application to Quantum Fluids Models (https://arxiv.org/abs/1703.09460)
[14] Madelung, Gross–Pitaevskii and Korteweg, Nonlinearity, Volume 25 (2012) no. 10, pp. 2843-2873 | DOI | MR
[15] Global solutions of the gravity-capillary water-wave system in three dimensions, Acta Math., Volume 219 (2017) no. 2, pp. 213-402 | DOI | MR
[16] Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. (2009) no. 3, pp. 414-432 | DOI | MR
[17] Global solutions for the gravity water waves equation in dimension 3, Ann. Math., Volume 175 (2012) no. 2, pp. 691-754 | DOI | MR
[18] Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 3, pp. 1427-1484 | DOI | MR
[19] On the lifespan of three-dimensional gravity water waves with vorticity (https://arxiv.org/abs/1812.01583)
[20] Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., Volume 74 (1987) no. 1, pp. 160-197 | DOI | MR
[21] Global smooth ion dynamics in the Euler–Poisson system, Commun. Math. Phys., Volume 303 (2011) no. 1, pp. 89-125 | DOI | MR
[22] Scattering for the Gross–Pitaevskii equation, Math. Res. Lett., Volume 13 (2006) no. 2-3, pp. 273-285 | DOI | MR
[23] Scattering theory for the Gross–Pitaevskii equation in three dimensions, Commun. Contemp. Math., Volume 11 (2009) no. 4, pp. 657-707 | DOI | MR
[24] Long term regularity of the one-fluid Euler–Maxwell system in 3D with vorticity, Adv. Math., Volume 325 (2018), pp. 719-769 | DOI | MR
[25] Global, small amplitude solutions to nonlinear evolution equations, Commun. Pure Appl. Math., Volume 36 (1983) no. 1, pp. 133-141 | DOI | MR
[26] Ondelettes et opérateurs. III Opérateurs multilinéaires, Actualités Mathématiques, Hermann, 1991, p. i-xii and 383–538 | MR
Cited by Sources: