We present a categorical relationship between iterated Sasaki-joins and Bott orbifolds. Then we show how to construct smooth Sasaki–Einstein (SE) structures on the iterated joins. These become increasingly complicated as dimension grows. We give an explicit nontrivial construction of (infinitely many) smooth SE structures up through dimension eleven, and conjecture the existence of smooth SE structures in all odd dimensions.
Nous présentons une relation catégorique entre les jointures Sasaki itérées et les orbifolds Bott. Ensuite, nous montrons comment construire des structures Sasaki–Einstein (SE) lisses sur les jointures itérées. Celles-ci deviennent de plus en plus compliquées à mesure que la dimension augmente. Nous donnons une construction non triviale explicite de structures SE lisses (infiniment nombreuses) jusqu’à la dimension onze, et conjecturons l’existence de structures SE lisses dans toutes les dimensions impaires.
Charles P. Boyer 1; Christina W. Tønnesen-Friedman 2
@article{AFST_2022_6_31_3_837_0, author = {Charles P. Boyer and Christina W. T{\o}nnesen-Friedman}, title = {Iterated $S^3$ {Sasaki} {Joins} and {Bott} {Orbifolds}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {837--860}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {3}, year = {2022}, doi = {10.5802/afst.1706}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1706/} }
TY - JOUR AU - Charles P. Boyer AU - Christina W. Tønnesen-Friedman TI - Iterated $S^3$ Sasaki Joins and Bott Orbifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 837 EP - 860 VL - 31 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1706/ DO - 10.5802/afst.1706 LA - en ID - AFST_2022_6_31_3_837_0 ER -
%0 Journal Article %A Charles P. Boyer %A Christina W. Tønnesen-Friedman %T Iterated $S^3$ Sasaki Joins and Bott Orbifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 837-860 %V 31 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1706/ %R 10.5802/afst.1706 %G en %F AFST_2022_6_31_3_837_0
Charles P. Boyer; Christina W. Tønnesen-Friedman. Iterated $S^3$ Sasaki Joins and Bott Orbifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 837-860. doi : 10.5802/afst.1706. https://afst.centre-mersenne.org/articles/10.5802/afst.1706/
[1] Contact homology of good toric contact manifolds, Compos. Math., Volume 148 (2012) no. 1, pp. 304-334 | DOI | MR | Zbl
[2] On the mean Euler characteristic of Gorenstein toric contact manifolds, Int. Math. Res. Not., Volume 2020 (2018) no. 14, p. 44-65–4495 | Zbl
[3] The Kähler geometry of Bott manifolds, Adv. Math., Volume 350 (2019), pp. 1-62 | DOI | Zbl
[4] Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, 2008
[5] Constructions in Sasakian geometry, Math. Z., Volume 257 (2007) no. 4, pp. 907-924 | DOI | MR | Zbl
[6] An application of the Duistermaat–Heckman theorem and its extensions in Sasaki geometry, Geom. Topol., Volume 22 (2018) no. 7, pp. 4205-4234 | DOI | MR | Zbl
[7] Reducibility in Sasakian geometry, Trans. Am. Math. Soc., Volume 370 (2018) no. 10, pp. 6825-6869 | DOI | MR | Zbl
[8] On the equivalence problem for toric contact structures on -bundles over , Pac. J. Math., Volume 267 (2014) no. 2, pp. 277-324 | DOI | MR | Zbl
[9] The Sasaki join construction (to appear in J. Math. Soc. Japan) | arXiv
[10] The Sasaki join, Hamiltonian 2-forms, and constant scalar curvature, J. Geom. Anal., Volume 26 (2016) no. 2, pp. 1023-1060 | DOI | MR | Zbl
[11] Sasaki–Einstein metrics on a class of 7-manifolds, J. Geom. Phys., Volume 140 (2019), pp. 111-124 | DOI | MR | Zbl
[12] On positivity in Sasaki geometry, Geom. Dedicata, Volume 204 (2020), pp. 149-164 | DOI | MR | Zbl
[13] Kähler metrics with cone singularities along a divisor, Essays in mathematics and its applications, Springer, 2012, pp. 49-79 | DOI | Zbl
[14] Sasaki–Einstein metrics on , Adv. Theor. Math. Phys., Volume 8 (2004) no. 4, pp. 711-734 | DOI | MR | Zbl
[15] Topoi. The categorial analysis of logic, Studies in Logic and the Foundations of Mathematics, 98, North-Holland, 1984
[16] Bott towers, complete integrability, and the extended character of representations, Duke Math. J., Volume 76 (1994) no. 1, pp. 23-58 | MR | Zbl
[17] Topos theory, London Mathematical Society Monographs, 10, Academic Press Inc., 1977
[18] Non-homogeneous Kähler–Einstein metrics on compact complex manifolds, Curvature and topology of Riemannian manifolds (Lecture Notes in Mathematics), Volume 1201, Springer, 1986, pp. 165-179 | DOI | Zbl
[19] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004
[20] Orbifolds as stacks?, Enseign. Math., Volume 56 (2010) no. 3, pp. 315-363 | DOI | MR | Zbl
[21] Sheaves in geometry and logic: a first introduction to topos theory, Universitext, Springer, 1994 | DOI
[22] Orbifolds as groupoids: an introduction, Orbifolds in mathematics and physics (Contemporary Mathematics), Volume 310, American Mathematical Society, 2001, pp. 205-222 | DOI | Zbl
[23] Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, 91, Cambridge University Press, 2003 | DOI
[24] Orbifolds, sheaves and groupoids, -Theory, Volume 12 (1997) no. 1, pp. 3-21 | DOI | MR | Zbl
[25] Fano generalized Bott manifolds, Manuscr. Math., Volume 163 (2020) no. 3-4, pp. 427-435 | DOI | MR | Zbl
[26] Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry (Mathematical Surveys and Monographs), Volume 123, American Mathematical Society, 2005, pp. 1-104 | MR
Cited by Sources: