Nous montrons que les fonctions
We show that the spaces of
Sławomir Dinew 1

@article{AFST_2022_6_31_3_995_0, author = {S{\l}awomir Dinew}, title = {$m$-subharmonic and $m$-plurisubharmonic functions: on two problems of {Sadullaev}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {995--1009}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {3}, year = {2022}, doi = {10.5802/afst.1711}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1711/} }
TY - JOUR AU - Sławomir Dinew TI - $m$-subharmonic and $m$-plurisubharmonic functions: on two problems of Sadullaev JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 995 EP - 1009 VL - 31 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1711/ DO - 10.5802/afst.1711 LA - en ID - AFST_2022_6_31_3_995_0 ER -
%0 Journal Article %A Sławomir Dinew %T $m$-subharmonic and $m$-plurisubharmonic functions: on two problems of Sadullaev %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 995-1009 %V 31 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1711/ %R 10.5802/afst.1711 %G en %F AFST_2022_6_31_3_995_0
Sławomir Dinew. $m$-subharmonic and $m$-plurisubharmonic functions: on two problems of Sadullaev. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, AMAZER, Tome 31 (2022) no. 3, pp. 995-1009. doi : 10.5802/afst.1711. https://afst.centre-mersenne.org/articles/10.5802/afst.1711/
[1] Subharmonic functions on complex hyperplanes of
[2]
[3] Potential theory in the class of
[4] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 193-259 | DOI | Numdam | Zbl
[5] A New Capacity for Plurisubharmonic Functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl
[6] Weak solutions to the complex Hessian equation, Ann. Inst. Fourier, Volume 55 (2005) no. 5, pp. 1735-1756 | DOI | Numdam | MR | Zbl
[7] Defining nonlinear elliptic operators for non-smooth functions, Complex analysis and digital geometry, Univ. Uppsala, 2009, pp. 111-124 | MR | Zbl
[8] The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985) no. 3-4, pp. 261-301 | DOI | MR
[9] Complex Analytic and Differential Geometry, 1997 (http://www-fourier.ujf-grenoble.fr/~demailly/documents.html)
[10]
[11] A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations, Anal. PDE, Volume 12 (2019) no. 2, pp. 505-535 | DOI | MR | Zbl
[12] A priori estimates for complex Hessian equations, Anal. PDE, Volume 7 (2014) no. 1, pp. 227-244 | DOI | MR | Zbl
[13] Liouville and Calabi-Yau type theorems for complex Hessian equations, Am. J. Math., Volume 139 (2017) no. 2, pp. 403-415 | DOI | MR | Zbl
[14] Non standard properties of
[15]
[16] Regularity of the Bergman projection on forms and plurisubharmonicity conditions, Math. Ann., Volume 336 (2006) no. 2, pp. 335-359 | DOI | MR | Zbl
[17]
[18] Further developments of the pluripotential theory (survey), Algebra, complex analysis, and pluripotential theory (Springer Proceedings in Mathematics & Statistics), Volume 264, Springer, 2018, pp. 167-182 | DOI | MR | Zbl
[19] The Monge–Ampère equation for
[20] Plurisubharmonic functions in calibrated geometry and
[21] The
Cité par Sources :