We show that the spaces of --subharmonic and --subharmonic functions differ in sufficiently high dimensions. We also prove that the Monge–Ampère type operator associated to the space of -plurisubharmonic functions does not allow an integral comparison principle except in the classical cases and . These answer in the negative two problems posed by A. Sadullaev.
Nous montrons que les fonctions --sousharmoniques et --sousharmoniques diffèrent en dimension suffisamment grande. Nous prouvons que l’opérateur de type Monge–Ampère associé à l’espace des fonctions -plurisousharmoniques ne permet pas un principe de comparaison intégral sauf dans les cas classiques et . Cela répond par la négative à deux problèmes posés par A. Sadullaev.
Sławomir Dinew 1
@article{AFST_2022_6_31_3_995_0, author = {S{\l}awomir Dinew}, title = {$m$-subharmonic and $m$-plurisubharmonic functions: on two problems of {Sadullaev}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {995--1009}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {3}, year = {2022}, doi = {10.5802/afst.1711}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1711/} }
TY - JOUR AU - Sławomir Dinew TI - $m$-subharmonic and $m$-plurisubharmonic functions: on two problems of Sadullaev JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 995 EP - 1009 VL - 31 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1711/ DO - 10.5802/afst.1711 LA - en ID - AFST_2022_6_31_3_995_0 ER -
%0 Journal Article %A Sławomir Dinew %T $m$-subharmonic and $m$-plurisubharmonic functions: on two problems of Sadullaev %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 995-1009 %V 31 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1711/ %R 10.5802/afst.1711 %G en %F AFST_2022_6_31_3_995_0
Sławomir Dinew. $m$-subharmonic and $m$-plurisubharmonic functions: on two problems of Sadullaev. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 995-1009. doi : 10.5802/afst.1711. https://afst.centre-mersenne.org/articles/10.5802/afst.1711/
[1] Subharmonic functions on complex hyperplanes of , J. Sib. Fed. Univ., Math. Phys., Volume 6 (2013) no. 4, pp. 409-416 | Zbl
[2] -measure in the class of -wsh functions, J. Sib. Fed. Univ., Math. Phys., Volume 7 (2014) no. 1, pp. 3-9 | Zbl
[3] Potential theory in the class of -sh functions, Proc. Steklov Inst. Math., Volume 279 (2012), pp. 155-180
[4] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 193-259 | DOI | Numdam | Zbl
[5] A New Capacity for Plurisubharmonic Functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl
[6] Weak solutions to the complex Hessian equation, Ann. Inst. Fourier, Volume 55 (2005) no. 5, pp. 1735-1756 | DOI | Numdam | MR | Zbl
[7] Defining nonlinear elliptic operators for non-smooth functions, Complex analysis and digital geometry, Univ. Uppsala, 2009, pp. 111-124 | MR | Zbl
[8] The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985) no. 3-4, pp. 261-301 | DOI | MR
[9] Complex Analytic and Differential Geometry, 1997 (http://www-fourier.ujf-grenoble.fr/~demailly/documents.html)
[10] -plurisubharmonicity and q-pseudoconvexity in , Publ. Mat., Barc., Volume 50 (2006) no. 2, pp. 349-369 | MR | Zbl
[11] A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations, Anal. PDE, Volume 12 (2019) no. 2, pp. 505-535 | DOI | MR | Zbl
[12] A priori estimates for complex Hessian equations, Anal. PDE, Volume 7 (2014) no. 1, pp. 227-244 | DOI | MR | Zbl
[13] Liouville and Calabi-Yau type theorems for complex Hessian equations, Am. J. Math., Volume 139 (2017) no. 2, pp. 403-415 | DOI | MR | Zbl
[14] Non standard properties of -subharmonic functions, Dolomites Res. Notes Approx., Volume 11 (2018) no. 4, pp. 35-50 | MR
[15] -convexity, -plurisubharmonicity and the Levi problem, Indiana Univ. Math. J., Volume 62 (2013) no. 1, pp. 149-169 | DOI | MR | Zbl
[16] Regularity of the Bergman projection on forms and plurisubharmonicity conditions, Math. Ann., Volume 336 (2006) no. 2, pp. 335-359 | DOI | MR | Zbl
[17] -problem on weakly -convex domains, Math. Ann., Volume 290 (1991) no. 1, pp. 3-18 | MR | Zbl
[18] Further developments of the pluripotential theory (survey), Algebra, complex analysis, and pluripotential theory (Springer Proceedings in Mathematics & Statistics), Volume 264, Springer, 2018, pp. 167-182 | DOI | MR | Zbl
[19] The Monge–Ampère equation for -plurisubharmonic functions on a compact Kähler manifold, J. Am. Math. Soc., Volume 30 (2017) no. 2, pp. 311-346 | DOI | Zbl
[20] Plurisubharmonic functions in calibrated geometry and -convexity, Math. Z., Volume 264 (2010) no. 4, pp. 939-957 | DOI | MR | Zbl
[21] The -Hessian equation, Lecture Notes in Mathematics, 1977, Springer, 2009, pp. 177-252
Cited by Sources: