Uniform estimates for cscK metrics
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, AMAZER, Volume 31 (2022) no. 3, pp. 975-993.

This note grew out of a series of lectures held in Cortona in 2019 and whose aim was to understand the recent breakthrough obtained by Chen and Cheng on the existence of constant scalar curvature Kähler metrics. We present a detailed version of the C 0 and C 2 a priori estimates within the realm of pluripotential theory.

Cette note est le fruit d’une série d’exposés donnés à Cortona en 2019 et dont le but visait à comprendre les avancées majeures due à Chen et Cheng sur l’existence de métriques kähleriennes à courbure scalaire constante. Nous donnons ici une preuve alternative et détaillée des estimées a priori dites C 0 et C 2 dans le cadre de la théorie du pluripotentiel.

Published online:
DOI: 10.5802/afst.1710

Alix Deruelle 1; Eleonora Di Nezza 2, 3

1 Institut de Mathématiques de Jussieu, Paris Rive Gauche (IMJ-PRG) UPMC - Campus Jussieu, 4, place Jussieu Boite Courrier 247 - 75252 Paris Cedex 05, France
2 Institut de Mathématiques de Jussieu, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
3 Centre de Mathématiques Laurent Schwartz, École Polytechnique, Palaiseau Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_3_975_0,
     author = {Alix Deruelle and Eleonora Di Nezza},
     title = {Uniform estimates for {cscK} metrics},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {975--993},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {3},
     year = {2022},
     doi = {10.5802/afst.1710},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1710/}
}
TY  - JOUR
AU  - Alix Deruelle
AU  - Eleonora Di Nezza
TI  - Uniform estimates for cscK metrics
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 975
EP  - 993
VL  - 31
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1710/
DO  - 10.5802/afst.1710
LA  - en
ID  - AFST_2022_6_31_3_975_0
ER  - 
%0 Journal Article
%A Alix Deruelle
%A Eleonora Di Nezza
%T Uniform estimates for cscK metrics
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 975-993
%V 31
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1710/
%R 10.5802/afst.1710
%G en
%F AFST_2022_6_31_3_975_0
Alix Deruelle; Eleonora Di Nezza. Uniform estimates for cscK metrics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, AMAZER, Volume 31 (2022) no. 3, pp. 975-993. doi : 10.5802/afst.1710. https://afst.centre-mersenne.org/articles/10.5802/afst.1710/

[1] Thierry Aubin Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., Volume 102 (1978) no. 1, pp. 63-95 | MR | Zbl

[2] Thierry Aubin Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer, 1998, xviii+395 pages | DOI | MR

[3] Robert J. Berman; Tamás Darvas; Chinh H. Lu Regularity of weak minimizers of the K-energy and applications to properness and K-stability, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020) no. 2, pp. 267-289 | DOI | MR | Zbl

[4] Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; Ahmed Zeriahi Monge-Ampère equations in big cohomology classes., Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl

[5] Eugenio Calabi Extremal Kähler metrics, Seminar on Differential Geometry (Annals of Mathematics Studies), Volume 102, Princeton University Press, 1982, pp. 259-290 | MR | Zbl

[6] Frédéric Campana; Henri Guenancia; Mihai Păun Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013), pp. 879-916 | DOI | Numdam | MR | Zbl

[7] Xiuxiong Chen; Jingrui Cheng On the constant scalar curvature Kähler metrics, general automorphism group (2018) | arXiv

[8] Xiuxiong Chen; Jingrui Cheng On the constant scalar curvature Kähler metrics, a priori estimates, J. Am. Math. Soc., Volume 34 (2021), pp. 909-936 | DOI | Zbl

[9] Xiuxiong Chen; Jingrui Cheng On the constant scalar curvature Kähler metrics, existence results, J. Am. Math. Soc., Volume 34 (2021), pp. 937-1009 | DOI | Zbl

[10] Xiuxiong Chen; Simon K. Donaldson; Song Sun Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 183-197 | DOI | MR | Zbl

[11] Xiuxiong Chen; Simon K. Donaldson; Song Sun Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 199-234 | DOI | MR | Zbl

[12] Xiuxiong Chen; Simon K. Donaldson; Song Sun Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 235-278 | DOI | MR | Zbl

[13] Tamás Darvas; Eleonora Di Nezza; Chinh H. Lu Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, Volume 11 (2018) no. 8, pp. 2049-2087 | DOI | MR | Zbl

[14] Tamás Darvas; Eleonora Di Nezza; Chinh H. Lu Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity, Math. Ann. (2019), pp. 1-38

[15] Tamás Darvas; Yanir A. Rubinstein Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Am. Math. Soc., Volume 30 (2017) no. 2, pp. 347-387 | DOI | MR | Zbl

[16] Simon K. Donaldson Scalar curvature and stability of toric varieties, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 289-349 | MR | Zbl

[17] Akito Futaki An obstruction to the existence of Einstein Kähler metrics, Invent. Math., Volume 73 (1983) no. 3, pp. 437-443 | DOI | MR

[18] Vincent Guedj; Ahmed Zeriahi The weighted Monge–Ampère energy of quasi plurisubharmonic functions, J. Funct. Anal., Volume 250 (2007), pp. 442-482 | DOI | Zbl

[19] Vincent Guedj; Ahmed Zeriahi Degenerate complex Monge-Ampère equations, EMS Tracts in Mathematics, 26, European Mathematical Society, 2017, xxiv+472 pages | DOI | MR

[20] Sławomir Kołodziej The complex Monge-Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | MR | Zbl

[21] Gábor Székelyhidi An introduction to extremal Kähler metrics, Graduate Studies in Mathematics, 152, American Mathematical Society, 2014, xvi+192 pages | DOI | MR

[22] Gang Tian K-stability and Kähler-Einstein metrics, Commun. Pure Appl. Math., Volume 68 (2015) no. 7, pp. 1085-1156 | DOI | MR

[23] Shing-Tung Yau On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I., Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl

Cited by Sources: