m-subharmonic and m-plurisubharmonic functions: on two problems of Sadullaev
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, AMAZER, Volume 31 (2022) no. 3, pp. 995-1009.

We show that the spaces of A-m-subharmonic and B-m-subharmonic functions differ in sufficiently high dimensions. We also prove that the Monge–Ampère type operator m associated to the space of m-plurisubharmonic functions does not allow an integral comparison principle except in the classical cases m=1 and m=n. These answer in the negative two problems posed by A. Sadullaev.

Nous montrons que les fonctions A-m-sousharmoniques et B-m-sousharmoniques diffèrent en dimension suffisamment grande. Nous prouvons que l’opérateur de type Monge–Ampère m associé à l’espace des fonctions m-plurisousharmoniques ne permet pas un principe de comparaison intégral sauf dans les cas classiques m=1 et m=n. Cela répond par la négative à deux problèmes posés par A. Sadullaev.

Published online:
DOI: 10.5802/afst.1711
Classification: 32W20, 32U15, 32Q15

Sławomir Dinew 1

1 Department of Mathematics and Computer Science, Jagiellonian University, 30-409 Kraków, ul. Lojasiewicza 6, Poland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_3_995_0,
     author = {S{\l}awomir Dinew},
     title = {$m$-subharmonic and $m$-plurisubharmonic functions: on two problems of {Sadullaev}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {995--1009},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {3},
     year = {2022},
     doi = {10.5802/afst.1711},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1711/}
}
TY  - JOUR
AU  - Sławomir Dinew
TI  - $m$-subharmonic and $m$-plurisubharmonic functions: on two problems of Sadullaev
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 995
EP  - 1009
VL  - 31
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1711/
DO  - 10.5802/afst.1711
LA  - en
ID  - AFST_2022_6_31_3_995_0
ER  - 
%0 Journal Article
%A Sławomir Dinew
%T $m$-subharmonic and $m$-plurisubharmonic functions: on two problems of Sadullaev
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 995-1009
%V 31
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1711/
%R 10.5802/afst.1711
%G en
%F AFST_2022_6_31_3_995_0
Sławomir Dinew. $m$-subharmonic and $m$-plurisubharmonic functions: on two problems of Sadullaev. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, AMAZER, Volume 31 (2022) no. 3, pp. 995-1009. doi : 10.5802/afst.1711. https://afst.centre-mersenne.org/articles/10.5802/afst.1711/

[1] Bakhrom Abdullaev Subharmonic functions on complex hyperplanes of n , J. Sib. Fed. Univ., Math. Phys., Volume 6 (2013) no. 4, pp. 409-416 | Zbl

[2] Bakhrom Abdullaev 𝒫-measure in the class of m-wsh functions, J. Sib. Fed. Univ., Math. Phys., Volume 7 (2014) no. 1, pp. 3-9 | Zbl

[3] Bakhrom Abdullaev; Azimbai Sadullaev Potential theory in the class of m-sh functions, Proc. Steklov Inst. Math., Volume 279 (2012), pp. 155-180

[4] Aldo Andreotti; Hans Grauert Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 193-259 | DOI | Numdam | Zbl

[5] Eric Bedford; Bert A. Taylor A New Capacity for Plurisubharmonic Functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl

[6] Zbigniew Blocki Weak solutions to the complex Hessian equation, Ann. Inst. Fourier, Volume 55 (2005) no. 5, pp. 1735-1756 | DOI | Numdam | MR | Zbl

[7] Zbigniew Blocki Defining nonlinear elliptic operators for non-smooth functions, Complex analysis and digital geometry, Univ. Uppsala, 2009, pp. 111-124 | MR | Zbl

[8] Luis Caffarelli; Louis Nirenberg; Joel Spruck The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985) no. 3-4, pp. 261-301 | DOI | MR

[9] Jean-Pierre Demailly Complex Analytic and Differential Geometry, 1997 (http://www-fourier.ujf-grenoble.fr/~demailly/documents.html)

[10] Nguyen Quang Dieu q-plurisubharmonicity and q-pseudoconvexity in n , Publ. Mat., Barc., Volume 50 (2006) no. 2, pp. 349-369 | MR | Zbl

[11] Sławomir Dinew; Hoang-Son Do; Tat Dat Tô A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations, Anal. PDE, Volume 12 (2019) no. 2, pp. 505-535 | DOI | MR | Zbl

[12] Sławomir Dinew; Sławomir Kołodziej A priori estimates for complex Hessian equations, Anal. PDE, Volume 7 (2014) no. 1, pp. 227-244 | DOI | MR | Zbl

[13] Sławomir Dinew; Sławomir Kołodziej Liouville and Calabi-Yau type theorems for complex Hessian equations, Am. J. Math., Volume 139 (2017) no. 2, pp. 403-415 | DOI | MR | Zbl

[14] Sławomir Dinew; Sławomir Kołodziej Non standard properties of m-subharmonic functions, Dolomites Res. Notes Approx., Volume 11 (2018) no. 4, pp. 35-50 | MR

[15] F. Reese Harvey; H. Blaine jun. Lawson p-convexity, p-plurisubharmonicity and the Levi problem, Indiana Univ. Math. J., Volume 62 (2013) no. 1, pp. 149-169 | DOI | MR | Zbl

[16] Anne-Katrin Herbig; Jeffery D. McNeal Regularity of the Bergman projection on forms and plurisubharmonicity conditions, Math. Ann., Volume 336 (2006) no. 2, pp. 335-359 | DOI | MR | Zbl

[17] Lop-Hing Ho ¯-problem on weakly q-convex domains, Math. Ann., Volume 290 (1991) no. 1, pp. 3-18 | MR | Zbl

[18] Azimbai Sadullaev Further developments of the pluripotential theory (survey), Algebra, complex analysis, and pluripotential theory (Springer Proceedings in Mathematics & Statistics), Volume 264, Springer, 2018, pp. 167-182 | DOI | MR | Zbl

[19] Valentino Tosatti; Ben Weinkove The Monge–Ampère equation for (n-1)-plurisubharmonic functions on a compact Kähler manifold, J. Am. Math. Soc., Volume 30 (2017) no. 2, pp. 311-346 | DOI | Zbl

[20] Misha Verbitsky Plurisubharmonic functions in calibrated geometry and q-convexity, Math. Z., Volume 264 (2010) no. 4, pp. 939-957 | DOI | MR | Zbl

[21] Xu-Jia Wang The k-Hessian equation, Lecture Notes in Mathematics, 1977, Springer, 2009, pp. 177-252

Cited by Sources: