The aim of this paper is to investigate the strict convexity of the Mabuchi functional up to a holomorphic automorphism. We partially answered this question, and proved this strict convexity when a -geodesic connects two non-degenerate energy minimizers.
Le but de cet article est d’étudier la convexité stricte de la fonctionnelle de Mabuchi modulo automorphismes holomorphes. Nous avons partiellement répondu à cette question, et prouvé cette convexité stricte lorsqu’une -géodésique relie deux minimisateurs d’énergie non dégénérés.
Accepted:
Published online:
Long Li 1
@article{AFST_2022_6_31_5_1303_0, author = {Long Li}, title = {Strict convexity of the {Mabuchi} functional for energy minimizers}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1303--1321}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {5}, year = {2022}, doi = {10.5802/afst.1720}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1720/} }
TY - JOUR AU - Long Li TI - Strict convexity of the Mabuchi functional for energy minimizers JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1303 EP - 1321 VL - 31 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1720/ DO - 10.5802/afst.1720 LA - en ID - AFST_2022_6_31_5_1303_0 ER -
%0 Journal Article %A Long Li %T Strict convexity of the Mabuchi functional for energy minimizers %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1303-1321 %V 31 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1720/ %R 10.5802/afst.1720 %G en %F AFST_2022_6_31_5_1303_0
Long Li. Strict convexity of the Mabuchi functional for energy minimizers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1303-1321. doi : 10.5802/afst.1720. https://afst.centre-mersenne.org/articles/10.5802/afst.1720/
[1] Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, Kinokuniya Company Ltd.; North-Holland, 1987, pp. 11-40 | DOI | Zbl
[2] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-41 | DOI | MR | Zbl
[3] On the strict convexity of the K-energy, Pure Appl. Math. Q., Volume 15 (2019) no. 4, pp. 983-999 | DOI | MR | Zbl
[4] Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Am. Math. Soc., Volume 30 (2017) no. 4, pp. 1165-1196 | DOI | Zbl
[5] A Brunn-Minkowvski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., Volume 200 (2015), pp. 149-200 | DOI | Zbl
[6] The space of Kähler metrics, J. Differ. Geom., Volume 56 (2000), pp. 189-234 | Zbl
[7] Geodesically convexity of small neighbourhood in space of Kähler metrics, J. Funct. Anal., Volume 279 (2020) no. 7, 108603
[8] Approximation of weak geodesics and subharmonicity of Mabuchi energy, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 5, pp. 935-957 | DOI | MR | Zbl
[9] Geometry of Kähler metrics and foliations by holomorphic disks, Publ. Math., Inst. Hautes Étud. Sci. (2008) no. 107, pp. 1-107 | DOI | Zbl
[10] Weak geodesics in the space of Kähler metrics, Math. Res. Lett., Volume 19 (2012) no. 5, pp. 1127-1135 | DOI | Zbl
[11] Regularization of closed positive currents and Intersection Theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl
[12] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 | DOI
[13] Constant scalar curvature equation and the regularity of its weak solution, Commun. Pure Appl. Math., Volume 72 (2017) no. 2, pp. 422-448 | MR | Zbl
Cited by Sources: