Strict convexity of the Mabuchi functional for energy minimizers
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1303-1321.

The aim of this paper is to investigate the strict convexity of the Mabuchi functional up to a holomorphic automorphism. We partially answered this question, and proved this strict convexity when a C 1,1 ¯ -geodesic connects two non-degenerate energy minimizers.

Le but de cet article est d’étudier la convexité stricte de la fonctionnelle de Mabuchi modulo automorphismes holomorphes. Nous avons partiellement répondu à cette question, et prouvé cette convexité stricte lorsqu’une C 1,1 ¯ -géodésique relie deux minimisateurs d’énergie non dégénérés.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1720

Long Li 1

1 Institute Fourier, 100 rue des maths 38610 Gières, Grenoble, France and Mathematics Institute, ShanghaiTech University, Pudong, Shanghai, 201210, China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_5_1303_0,
     author = {Long Li},
     title = {Strict convexity of the {Mabuchi} functional for energy minimizers},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1303--1321},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {5},
     year = {2022},
     doi = {10.5802/afst.1720},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1720/}
}
TY  - JOUR
AU  - Long Li
TI  - Strict convexity of the Mabuchi functional for energy minimizers
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 1303
EP  - 1321
VL  - 31
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1720/
DO  - 10.5802/afst.1720
LA  - en
ID  - AFST_2022_6_31_5_1303_0
ER  - 
%0 Journal Article
%A Long Li
%T Strict convexity of the Mabuchi functional for energy minimizers
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 1303-1321
%V 31
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1720/
%R 10.5802/afst.1720
%G en
%F AFST_2022_6_31_5_1303_0
Long Li. Strict convexity of the Mabuchi functional for energy minimizers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1303-1321. doi : 10.5802/afst.1720. https://afst.centre-mersenne.org/articles/10.5802/afst.1720/

[1] Shigetoshi Bando; Toshiki Mabuchi Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, Kinokuniya Company Ltd.; North-Holland, 1987, pp. 11-40 | DOI | Zbl

[2] Eric Bedford; B. Alan Taylor A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-41 | DOI | MR | Zbl

[3] Robert J. Berman On the strict convexity of the K-energy, Pure Appl. Math. Q., Volume 15 (2019) no. 4, pp. 983-999 | DOI | MR | Zbl

[4] Robert J. Berman; Bo Berndtsson Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Am. Math. Soc., Volume 30 (2017) no. 4, pp. 1165-1196 | DOI | Zbl

[5] Bo Berndtsson A Brunn-Minkowvski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., Volume 200 (2015), pp. 149-200 | DOI | Zbl

[6] Xiuxiong Chen The space of Kähler metrics, J. Differ. Geom., Volume 56 (2000), pp. 189-234 | Zbl

[7] Xiuxiong Chen; M. Feldman; J. Hu Geodesically convexity of small neighbourhood in space of Kähler metrics, J. Funct. Anal., Volume 279 (2020) no. 7, 108603

[8] Xiuxiong Chen; Long Li; Mihai Păun Approximation of weak geodesics and subharmonicity of Mabuchi energy, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 5, pp. 935-957 | DOI | MR | Zbl

[9] Xiuxiong Chen; Gang Tian Geometry of Kähler metrics and foliations by holomorphic disks, Publ. Math., Inst. Hautes Étud. Sci. (2008) no. 107, pp. 1-107 | DOI | Zbl

[10] Tamás Darvas; László Lempert Weak geodesics in the space of Kähler metrics, Math. Res. Lett., Volume 19 (2012) no. 5, pp. 1127-1135 | DOI | Zbl

[11] Jean-Pierre Demailly Regularization of closed positive currents and Intersection Theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl

[12] David Gilbarg; Neil S. Trudinger Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 | DOI

[13] Weiyong He; Yu Zeng Constant scalar curvature equation and the regularity of its weak solution, Commun. Pure Appl. Math., Volume 72 (2017) no. 2, pp. 422-448 | MR | Zbl

Cited by Sources: