Existence and uniqueness of S 1 -invariant Kähler–Ricci solitons
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 15-53.

We use the momentum construction for S 1 -invariant Kähler metrics as developed by Hwang–Singer to construct new examples of steady Kähler–Ricci solitons. We also prove that these solitons are unique in their Kähler class, provided the vector field and the asymptotic behaviour are fixed.

Nous utilisons la construction des métriques kähleriennes S 1 -invariantes de Hwang–Singer pour construire des nouveaux exemples de solitons de Kähler–Ricci. Nous montrons en outre que ces solitons sont uniques dans leur classe kählerienne, si le champ de vecteurs et les asymptotiques sont fixes.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1726
Classification: 53C55, 53C25, 53C21, 32L05
Keywords: Kähler geometry, steady solitons, $S^1$-invariance
Mot clés : géométrie de kähleriennne, solitons, $S^1$-invariance

Johannes Schäfer 1

1 Universität Bonn, Mathematisches Institut, Endenicher Allee 60, 53115 Bonn, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_1_15_0,
     author = {Johannes Sch\"afer},
     title = {Existence and uniqueness of $S^1$-invariant {K\"ahler{\textendash}Ricci} solitons},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {15--53},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     year = {2023},
     doi = {10.5802/afst.1726},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1726/}
}
TY  - JOUR
AU  - Johannes Schäfer
TI  - Existence and uniqueness of $S^1$-invariant Kähler–Ricci solitons
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 15
EP  - 53
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1726/
DO  - 10.5802/afst.1726
LA  - en
ID  - AFST_2023_6_32_1_15_0
ER  - 
%0 Journal Article
%A Johannes Schäfer
%T Existence and uniqueness of $S^1$-invariant Kähler–Ricci solitons
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 15-53
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1726/
%R 10.5802/afst.1726
%G en
%F AFST_2023_6_32_1_15_0
Johannes Schäfer. Existence and uniqueness of $S^1$-invariant Kähler–Ricci solitons. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 15-53. doi : 10.5802/afst.1726. https://afst.centre-mersenne.org/articles/10.5802/afst.1726/

[1] Arthur L. Besse Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 10, Springer, 1987 | DOI | Numdam | MR

[2] Olivier Biquard; Heather Macbeth Steady Kähler-Ricci solitons on crepant resolutions of finite quotients of n (2017) (https://arxiv.org/abs/1711.02019)

[3] Eugenio Calabi Métriques kählériennes et fibrés holomorphes, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979) no. 2, pp. 269-294 | DOI | Numdam | Zbl

[4] Huai-Dong Cao Existence of gradient Kähler–Ricci solitons, Elliptic and parabolic methods in geometry, A K Peters, 1996, pp. 1-16 | Zbl

[5] Alice Chaljub-Simon; Yvonne Choquet-Bruhat Problèmes elliptiques du second ordre sur une variété euclidienne à l’infini, Ann. Fac. Sci. Toulouse, Math., Volume 1 (1979) no. 1, pp. 9-25 | DOI | Numdam | Zbl

[6] Thierry Chave; Galliano Valent On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nucl. Phys., B, Volume 478 (1996) no. 3, pp. 758-778 | DOI | MR | Zbl

[7] Jeff Cheeger; Mikhail Gromov; Michael Taylor Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differ. Geom., Volume 17 (1982) no. 1, pp. 15-53 | MR | Zbl

[8] Ronan J. Conlon; Alix Deruelle Steady gradient Kähler-Ricci solitons on crepant resolutions of Calabi-Yau cones (2020) (https://arxiv.org/abs/2006.03100)

[9] Ronan J. Conlon; Hans-Joachim Hein Asymptotically conical Calabi–Yau manifolds, I, Duke Math. J., Volume 162 (2013) no. 15, pp. 2855-2902 | MR | Zbl

[10] Andrew S. Dancer; McKenzie Y. Wang On Ricci solitons of cohomogeneity one, Ann. Global Anal. Geom., Volume 39 (2011) no. 3, pp. 259-292 | DOI | MR | Zbl

[11] Mikhail Feldman; Tom Ilmanen; Dan Knopf Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differ. Geom., Volume 65 (2003) no. 2, pp. 169-209 | Zbl

[12] Akito Futaki; Mu-Tao Wang Constructing Kähler–Ricci solitons from Sasaki–Einstein manifolds, Asian J. Math., Volume 15 (2011) no. 1, pp. 33-52 | DOI | Zbl

[13] David Gilbarg; Neil S. Trudinger Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 (reprint of the 1998 edition) | DOI

[14] Ryushi Goto Calabi–Yau structures and Einstein–Sasakian structures on crepant resolutions of isolated singularities, J. Math. Soc. Japan, Volume 64 (2012) no. 3, pp. 1005-1052 | MR | Zbl

[15] Richard S. Hamilton The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) (Contemporary Mathematics), Volume 71, American Mathematical Society (1988), pp. 237-262 | DOI | MR | Zbl

[16] M. Haskins; H-J. Hein; J. Nordström Asymptotically cylindrical Calabi–Yau manifolds, J. Differ. Geom., Volume 101 (2015) no. 2, pp. 213-265 | MR | Zbl

[17] Hans-Joachim Hein Weighted Sobolev inequalities under lower Ricci curvature bounds, Proc. Am. Math. Soc., Volume 139 (2011) no. 8, pp. 2943-2955 | DOI | MR | Zbl

[18] Andrew D. Hwang; Michael A. Singer A momentum construction for circle-invariant Kähler metrics, Trans. Am. Math. Soc., Volume 354 (2002) no. 6, pp. 2285-2325 | DOI | Zbl

[19] Thomas Ivey Ricci solitons on compact three-manifolds, Differ. Geom. Appl., Volume 3 (1993) no. 4, pp. 301-307 | DOI | MR | Zbl

[20] Dominic D. Joyce Compact manifolds with special holonomy, Oxford University Press, 2000 | MR

[21] Chi Li On rotationally symmetric Kähler–Ricci solitons (2010) (https://arxiv.org/abs/1004.4049)

[22] Stephen P. Marshall Deformations of special Lagrangian submanifolds, Ph. D. Thesis, University of Oxford (2002)

[23] Ovidiu Munteanu; Jiaping Wang Kähler manifolds with real holomorphic vector fields, Math. Ann., Volume 363 (2015) no. 3-4, pp. 893-911 | DOI | Zbl

[24] Henrik Pedersen; Christina Tønnesen-Friedman; Galliano Valent Quasi-Einstein Kähler metrics, Lett. Math. Phys., Volume 50 (1999) no. 3, pp. 229-241 | DOI | Zbl

[25] Peter Petersen Convergence theorems in Riemannian geometry, Comparison geometry (Mathematical Sciences Research Institute Publications), Volume 30, Cambridge University Press, 1997, pp. 167-202 | MR | Zbl

[26] Bo Yang A characterization of noncompact Koiso-type solitons, Int. J. Math., Volume 23 (2012) no. 05, 1250054, 13 pages | MR | Zbl

Cited by Sources: