We use the momentum construction for -invariant Kähler metrics as developed by Hwang–Singer to construct new examples of steady Kähler–Ricci solitons. We also prove that these solitons are unique in their Kähler class, provided the vector field and the asymptotic behaviour are fixed.
Nous utilisons la construction des métriques kähleriennes -invariantes de Hwang–Singer pour construire des nouveaux exemples de solitons de Kähler–Ricci. Nous montrons en outre que ces solitons sont uniques dans leur classe kählerienne, si le champ de vecteurs et les asymptotiques sont fixes.
Accepted:
Published online:
Keywords: Kähler geometry, steady solitons, $S^1$-invariance
Mot clés : géométrie de kähleriennne, solitons, $S^1$-invariance
Johannes Schäfer 1
@article{AFST_2023_6_32_1_15_0, author = {Johannes Sch\"afer}, title = {Existence and uniqueness of $S^1$-invariant {K\"ahler{\textendash}Ricci} solitons}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {15--53}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {1}, year = {2023}, doi = {10.5802/afst.1726}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1726/} }
TY - JOUR AU - Johannes Schäfer TI - Existence and uniqueness of $S^1$-invariant Kähler–Ricci solitons JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 15 EP - 53 VL - 32 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1726/ DO - 10.5802/afst.1726 LA - en ID - AFST_2023_6_32_1_15_0 ER -
%0 Journal Article %A Johannes Schäfer %T Existence and uniqueness of $S^1$-invariant Kähler–Ricci solitons %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 15-53 %V 32 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1726/ %R 10.5802/afst.1726 %G en %F AFST_2023_6_32_1_15_0
Johannes Schäfer. Existence and uniqueness of $S^1$-invariant Kähler–Ricci solitons. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 15-53. doi : 10.5802/afst.1726. https://afst.centre-mersenne.org/articles/10.5802/afst.1726/
[1] Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 10, Springer, 1987 | DOI | Numdam | MR
[2] Steady Kähler-Ricci solitons on crepant resolutions of finite quotients of (2017) (https://arxiv.org/abs/1711.02019)
[3] Métriques kählériennes et fibrés holomorphes, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979) no. 2, pp. 269-294 | DOI | Numdam | Zbl
[4] Existence of gradient Kähler–Ricci solitons, Elliptic and parabolic methods in geometry, A K Peters, 1996, pp. 1-16 | Zbl
[5] Problèmes elliptiques du second ordre sur une variété euclidienne à l’infini, Ann. Fac. Sci. Toulouse, Math., Volume 1 (1979) no. 1, pp. 9-25 | DOI | Numdam | Zbl
[6] On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nucl. Phys., B, Volume 478 (1996) no. 3, pp. 758-778 | DOI | MR | Zbl
[7] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differ. Geom., Volume 17 (1982) no. 1, pp. 15-53 | MR | Zbl
[8] Steady gradient Kähler-Ricci solitons on crepant resolutions of Calabi-Yau cones (2020) (https://arxiv.org/abs/2006.03100)
[9] Asymptotically conical Calabi–Yau manifolds, I, Duke Math. J., Volume 162 (2013) no. 15, pp. 2855-2902 | MR | Zbl
[10] On Ricci solitons of cohomogeneity one, Ann. Global Anal. Geom., Volume 39 (2011) no. 3, pp. 259-292 | DOI | MR | Zbl
[11] Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differ. Geom., Volume 65 (2003) no. 2, pp. 169-209 | Zbl
[12] Constructing Kähler–Ricci solitons from Sasaki–Einstein manifolds, Asian J. Math., Volume 15 (2011) no. 1, pp. 33-52 | DOI | Zbl
[13] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 (reprint of the 1998 edition) | DOI
[14] Calabi–Yau structures and Einstein–Sasakian structures on crepant resolutions of isolated singularities, J. Math. Soc. Japan, Volume 64 (2012) no. 3, pp. 1005-1052 | MR | Zbl
[15] The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) (Contemporary Mathematics), Volume 71, American Mathematical Society (1988), pp. 237-262 | DOI | MR | Zbl
[16] Asymptotically cylindrical Calabi–Yau manifolds, J. Differ. Geom., Volume 101 (2015) no. 2, pp. 213-265 | MR | Zbl
[17] Weighted Sobolev inequalities under lower Ricci curvature bounds, Proc. Am. Math. Soc., Volume 139 (2011) no. 8, pp. 2943-2955 | DOI | MR | Zbl
[18] A momentum construction for circle-invariant Kähler metrics, Trans. Am. Math. Soc., Volume 354 (2002) no. 6, pp. 2285-2325 | DOI | Zbl
[19] Ricci solitons on compact three-manifolds, Differ. Geom. Appl., Volume 3 (1993) no. 4, pp. 301-307 | DOI | MR | Zbl
[20] Compact manifolds with special holonomy, Oxford University Press, 2000 | MR
[21] On rotationally symmetric Kähler–Ricci solitons (2010) (https://arxiv.org/abs/1004.4049)
[22] Deformations of special Lagrangian submanifolds, Ph. D. Thesis, University of Oxford (2002)
[23] Kähler manifolds with real holomorphic vector fields, Math. Ann., Volume 363 (2015) no. 3-4, pp. 893-911 | DOI | Zbl
[24] Quasi-Einstein Kähler metrics, Lett. Math. Phys., Volume 50 (1999) no. 3, pp. 229-241 | DOI | Zbl
[25] Convergence theorems in Riemannian geometry, Comparison geometry (Mathematical Sciences Research Institute Publications), Volume 30, Cambridge University Press, 1997, pp. 167-202 | MR | Zbl
[26] A characterization of noncompact Koiso-type solitons, Int. J. Math., Volume 23 (2012) no. 05, 1250054, 13 pages | MR | Zbl
Cited by Sources: