In this article, we study algebraic dynamical pairs parametrized by an irreducible quasi-projective curve having an absolutely continuous bifurcation measure. We prove that, if is non-isotrivial and is unstable, this is equivalent to the fact that is a family of Lattès maps. To do so, we prove the density of transversely prerepelling parameters in the bifurcation locus of and a similarity property, at any transversely prerepelling parameter , between the measure and the maximal entropy measure of . We also establish an equivalent result for dynamical pairs of , under an additional mild assumption.
Dans cet article, nous étudions les paires dynamiques algébriques paramétrées par une courbe quasi-projective irréductible possédant une mesure de bifurcation absolument continue. Nous prouvons que, si la famille n’est pas isotriviale et si la paire est instable, c’est équivalent au fait que la famille soit une famille d’exemples de Lattès flexibles. A cette fin, nous montrons la densité des paramètres transversalement prérépulsifs dans le lieu de bifurcation de la paire , ainsi qu’une propriété de similarité, en un paramètre transversalement prérépulsif , entre la mesure de bifurcation et la mesure d’entropie maximale de . Sous une hypothèse relativement générale, nous établissons également un résultat similaire pour les paires dynamiques de .
Accepted:
Published online:
Thomas Gauthier 1
@article{AFST_2023_6_32_2_203_0, author = {Thomas Gauthier}, title = {Dynamical pairs with an absolutely continuous bifurcation measure}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {203--230}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {2}, year = {2023}, doi = {10.5802/afst.1735}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1735/} }
TY - JOUR AU - Thomas Gauthier TI - Dynamical pairs with an absolutely continuous bifurcation measure JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 203 EP - 230 VL - 32 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1735/ DO - 10.5802/afst.1735 LA - en ID - AFST_2023_6_32_2_203_0 ER -
%0 Journal Article %A Thomas Gauthier %T Dynamical pairs with an absolutely continuous bifurcation measure %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 203-230 %V 32 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1735/ %R 10.5802/afst.1735 %G en %F AFST_2023_6_32_2_203_0
Thomas Gauthier. Dynamical pairs with an absolutely continuous bifurcation measure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 203-230. doi : 10.5802/afst.1735. https://afst.centre-mersenne.org/articles/10.5802/afst.1735/
[1] Collet, Eckmann and the bifurcation measure, Invent. Math., Volume 217 (2019) no. 3, pp. 749-797 | DOI | MR | Zbl
[2] Preperiodic points and unlikely intersections, Duke Math. J., Volume 159 (2011) no. 1, pp. 1-29 | MR | Zbl
[3] Special curves and postcritically finite polynomials, Forum Math. Pi, Volume 1 (2013), e3, 35 pages | MR | Zbl
[4] Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of , Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 1, pp. 215-262 | DOI | MR | Zbl
[5] Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv., Volume 80 (2005) no. 2, pp. 433-454 | DOI | Zbl
[6] Une caractérisation géométrique des exemples de Lattès de , Bull. Soc. Math. Fr., Volume 129 (2001) no. 2, pp. 175-188 | DOI | Zbl
[7] Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de , Acta Math., Volume 182 (1999) no. 2, pp. 143-157 | DOI | Zbl
[8] Bifurcation Measure and Postcritically Finite Rational Maps, Complex dynamics: families and friends, A K Peters, 2009, pp. 491-512 | DOI | Zbl
[9] The bifurcation measure has maximal entropy, Isr. J. Math., Volume 235 (2020) no. 1, pp. 213-243 | DOI | MR | Zbl
[10] Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003) no. 1, pp. 43-73 | DOI | MR | Zbl
[11] Bifurcations, intersections, and heights, Algebra Number Theory, Volume 10 (2016) no. 5, pp. 1031-1056 | DOI | MR | Zbl
[12] Variation of canonical height and equidistribution, Am. J. Math., Volume 142 (2020) no. 2, pp. 443-473 | DOI | MR | Zbl
[13] Bifurcation measures and quadratic rational maps, Proc. Lond. Math. Soc., Volume 111 (2015) no. 1, pp. 149-180 | DOI | MR | Zbl
[14] Dynamique des applications d’allure polynomiale, J. Math. Pures Appl., Volume 82 (2003) no. 4, pp. 367-423 | DOI | MR | Zbl
[15] The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse, Math., Volume 22 (2013) no. 3, pp. 445-464 | DOI | Numdam | MR | Zbl
[16] Distribution of rational maps with a preperiodic critical point, Am. J. Math., Volume 130 (2008) no. 4, pp. 979-1032 | DOI | MR | Zbl
[17] Propriétés extrémales et caractéristiques des exemples de Lattès, Ph. D. Thesis, Université Paul Sabatier - Toulouse III (France) (2002)
[18] Distribution of postcritically finite polynomials, Isr. J. Math., Volume 209 (2015) no. 1, pp. 235-292 | DOI | MR | Zbl
[19] Classification of special curves in the space of cubic polynomials, Int. Math. Res. Not., Volume 2018 (2018) no. 2, pp. 362-411 | MR | Zbl
[20] Continuity of the Green function in meromorphic families of polynomials, Algebra Number Theory, Volume 12 (2018) no. 6, pp. 1471-1487 | DOI | MR | Zbl
[21] Strong bifurcation loci of full Hausdorff dimension, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 6, pp. 947-984 | DOI | Numdam | MR | Zbl
[22] Symmetrization of Rational Maps: Arithmetic Properties and Families of Lattès Maps of (2016) (https://arxiv.org/abs/1603.04887v1)
[23] Similarity between the Mandelbrot set and Julia sets, Commun. Math. Phys., Volume 134 (1990) no. 3, pp. 587-617 | MR | Zbl
[24] On the dynamics of rational maps, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983) no. 2, pp. 193-217 | DOI | Numdam | MR
[25] Families of rational maps and iterative root-finding algorithms, Ann. Math., Volume 125 (1987) no. 3, pp. 467-493 | DOI | MR | Zbl
[26] Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math., Volume 135 (1998) no. 2, pp. 351-395 | DOI | Zbl
[27] One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete, 25, Springer, 1993, xiv+605 pages
[28] Positive measure sets of ergodic rational maps, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 3, pp. 383-407 | DOI | Numdam | MR | Zbl
[29] Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math., Volume 99 (1990) no. 3, pp. 627-649 | DOI | MR | Zbl
Cited by Sources: