Dynamical pairs with an absolutely continuous bifurcation measure
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 203-230.

In this article, we study algebraic dynamical pairs (f,a) parametrized by an irreducible quasi-projective curve Λ having an absolutely continuous bifurcation measure. We prove that, if f is non-isotrivial and (f,a) is unstable, this is equivalent to the fact that f is a family of Lattès maps. To do so, we prove the density of transversely prerepelling parameters in the bifurcation locus of (f,a) and a similarity property, at any transversely prerepelling parameter λ 0 , between the measure μ f,a and the maximal entropy measure of f λ 0 . We also establish an equivalent result for dynamical pairs of k , under an additional mild assumption.

Dans cet article, nous étudions les paires dynamiques (f,a) algébriques paramétrées par une courbe quasi-projective irréductible possédant une mesure de bifurcation absolument continue. Nous prouvons que, si la famille f n’est pas isotriviale et si la paire (f,a) est instable, c’est équivalent au fait que la famille f soit une famille d’exemples de Lattès flexibles. A cette fin, nous montrons la densité des paramètres transversalement prérépulsifs dans le lieu de bifurcation de la paire (f,a), ainsi qu’une propriété de similarité, en un paramètre transversalement prérépulsif λ 0 , entre la mesure de bifurcation μ f,a et la mesure d’entropie maximale de f λ 0 . Sous une hypothèse relativement générale, nous établissons également un résultat similaire pour les paires dynamiques de k .

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1735

Thomas Gauthier 1

1 CMLS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_2_203_0,
     author = {Thomas Gauthier},
     title = {Dynamical pairs with an absolutely continuous bifurcation measure},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {203--230},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {2},
     year = {2023},
     doi = {10.5802/afst.1735},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1735/}
}
TY  - JOUR
AU  - Thomas Gauthier
TI  - Dynamical pairs with an absolutely continuous bifurcation measure
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 203
EP  - 230
VL  - 32
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1735/
DO  - 10.5802/afst.1735
LA  - en
ID  - AFST_2023_6_32_2_203_0
ER  - 
%0 Journal Article
%A Thomas Gauthier
%T Dynamical pairs with an absolutely continuous bifurcation measure
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 203-230
%V 32
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1735/
%R 10.5802/afst.1735
%G en
%F AFST_2023_6_32_2_203_0
Thomas Gauthier. Dynamical pairs with an absolutely continuous bifurcation measure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 203-230. doi : 10.5802/afst.1735. https://afst.centre-mersenne.org/articles/10.5802/afst.1735/

[1] Matthieu Astorg; Thomas Gauthier; Nicolae Mihalache; Gabriel Vigny Collet, Eckmann and the bifurcation measure, Invent. Math., Volume 217 (2019) no. 3, pp. 749-797 | DOI | MR | Zbl

[2] Matthew Baker; Laura DeMarco Preperiodic points and unlikely intersections, Duke Math. J., Volume 159 (2011) no. 1, pp. 1-29 | MR | Zbl

[3] Matthew Baker; Laura DeMarco Special curves and postcritically finite polynomials, Forum Math. Pi, Volume 1 (2013), e3, 35 pages | MR | Zbl

[4] François Berteloot; Fabrizio Bianchi; Christophe Dupont Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of k , Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 1, pp. 215-262 | DOI | MR | Zbl

[5] François Berteloot; Christophe Dupont Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv., Volume 80 (2005) no. 2, pp. 433-454 | DOI | Zbl

[6] François Berteloot; Jean-Jacques Loeb Une caractérisation géométrique des exemples de Lattès de k , Bull. Soc. Math. Fr., Volume 129 (2001) no. 2, pp. 175-188 | DOI | Zbl

[7] Jean-Yves Briend; Julien Duval Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de ℂℙ k , Acta Math., Volume 182 (1999) no. 2, pp. 143-157 | DOI | Zbl

[8] Xavier Buff; Adam Epstein Bifurcation Measure and Postcritically Finite Rational Maps, Complex dynamics: families and friends, A K Peters, 2009, pp. 491-512 | DOI | Zbl

[9] Henry De Thélin; Thomas Gauthier; Gabriel Vigny The bifurcation measure has maximal entropy, Isr. J. Math., Volume 235 (2020) no. 1, pp. 213-243 | DOI | MR | Zbl

[10] Laura DeMarco Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003) no. 1, pp. 43-73 | DOI | MR | Zbl

[11] Laura DeMarco Bifurcations, intersections, and heights, Algebra Number Theory, Volume 10 (2016) no. 5, pp. 1031-1056 | DOI | MR | Zbl

[12] Laura DeMarco; Niki Myrto Mavraki Variation of canonical height and equidistribution, Am. J. Math., Volume 142 (2020) no. 2, pp. 443-473 | DOI | MR | Zbl

[13] Laura DeMarco; Xiaoguang Wang; Hexi Ye Bifurcation measures and quadratic rational maps, Proc. Lond. Math. Soc., Volume 111 (2015) no. 1, pp. 149-180 | DOI | MR | Zbl

[14] Tien-Cuong Dinh; Nessim Sibony Dynamique des applications d’allure polynomiale, J. Math. Pures Appl., Volume 82 (2003) no. 4, pp. 367-423 | DOI | MR | Zbl

[15] Romain Dujardin The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse, Math., Volume 22 (2013) no. 3, pp. 445-464 | DOI | Numdam | MR | Zbl

[16] Romain Dujardin; Charles Favre Distribution of rational maps with a preperiodic critical point, Am. J. Math., Volume 130 (2008) no. 4, pp. 979-1032 | DOI | MR | Zbl

[17] Christophe Dupont Propriétés extrémales et caractéristiques des exemples de Lattès, Ph. D. Thesis, Université Paul Sabatier - Toulouse III (France) (2002)

[18] Charles Favre; Thomas Gauthier Distribution of postcritically finite polynomials, Isr. J. Math., Volume 209 (2015) no. 1, pp. 235-292 | DOI | MR | Zbl

[19] Charles Favre; Thomas Gauthier Classification of special curves in the space of cubic polynomials, Int. Math. Res. Not., Volume 2018 (2018) no. 2, pp. 362-411 | MR | Zbl

[20] Charles Favre; Thomas Gauthier Continuity of the Green function in meromorphic families of polynomials, Algebra Number Theory, Volume 12 (2018) no. 6, pp. 1471-1487 | DOI | MR | Zbl

[21] Thomas Gauthier Strong bifurcation loci of full Hausdorff dimension, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 6, pp. 947-984 | DOI | Numdam | MR | Zbl

[22] Thomas Gauthier; Benjamin Hutz; Scott Kaschner Symmetrization of Rational Maps: Arithmetic Properties and Families of Lattès Maps of k (2016) (https://arxiv.org/abs/1603.04887v1)

[23] Tan Lei Similarity between the Mandelbrot set and Julia sets, Commun. Math. Phys., Volume 134 (1990) no. 3, pp. 587-617 | MR | Zbl

[24] Ricardo Mañé; Paulo Sad; Dennis Sullivan On the dynamics of rational maps, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983) no. 2, pp. 193-217 | DOI | Numdam | MR

[25] Curt McMullen Families of rational maps and iterative root-finding algorithms, Ann. Math., Volume 125 (1987) no. 3, pp. 467-493 | DOI | MR | Zbl

[26] Curt McMullen; Dennis Sullivan Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math., Volume 135 (1998) no. 2, pp. 351-395 | DOI | Zbl

[27] Welington de Melo; Sebastian van Strien One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete, 25, Springer, 1993, xiv+605 pages

[28] Mary Rees Positive measure sets of ergodic rational maps, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 3, pp. 383-407 | DOI | Numdam | MR | Zbl

[29] Anna Zdunik Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math., Volume 99 (1990) no. 3, pp. 627-649 | DOI | MR | Zbl

Cited by Sources: