Hermitian metrics on the anti-canonical bundle of the blow-up of the projective plane at nine points
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 231-285.

We investigate Hermitian metrics on the anti-canonical bundle of a rational surface obtained by blowing up the projective plane at nine points. For that purpose, we pose a modified variant of an argument made by Ueda on the complex analytic structure of a neighborhood of a subvariety by considering the deformation of the complex structure.

Nous étudions les métriques hermitiennes sur le faisceau anticanonique d’une surface rationnelle obtenue en éclatant le plan projectif en neuf points. Dans ce but nous utilisons une variante modifiée d’un argument de Ueda sur la structure analytique complexe d’un voisinage d’une sous-variété en considérant la déformation de la structure complexe.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1736
Classification: 32J25, 14C20
Keywords: The blow-up of the projective plane at nine points, Hermitian metrics, neighborhoods of subvarieties, Ueda theory

Takayuki Koike 1

1 Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku Osaka, 558-8585, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_2_231_0,
     author = {Takayuki Koike},
     title = {Hermitian metrics on the anti-canonical bundle of the blow-up of the projective plane at nine points},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {231--285},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {2},
     year = {2023},
     doi = {10.5802/afst.1736},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1736/}
}
TY  - JOUR
AU  - Takayuki Koike
TI  - Hermitian metrics on the anti-canonical bundle of the blow-up of the projective plane at nine points
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 231
EP  - 285
VL  - 32
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1736/
DO  - 10.5802/afst.1736
LA  - en
ID  - AFST_2023_6_32_2_231_0
ER  - 
%0 Journal Article
%A Takayuki Koike
%T Hermitian metrics on the anti-canonical bundle of the blow-up of the projective plane at nine points
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 231-285
%V 32
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1736/
%R 10.5802/afst.1736
%G en
%F AFST_2023_6_32_2_231_0
Takayuki Koike. Hermitian metrics on the anti-canonical bundle of the blow-up of the projective plane at nine points. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 231-285. doi : 10.5802/afst.1736. https://afst.centre-mersenne.org/articles/10.5802/afst.1736/

[1] Vladimir I. Arnolʼd Bifurcations of invariant manifolds of differential equations and normal forms in neighborhoods of elliptic curves, Funkts. Anal. Prilozh., Volume 10 (1976) no. 4, pp. 1-12 | Zbl

[2] Marco Brunella On Kähler surfaces with semipositive Ricci curvature, Riv. Mat. Univ. Parma, Volume 1 (2010) no. 2, pp. 441-450 | Zbl

[3] Benoît Claudon; Frank Loray; Jorge Vitório Pereira; Frédéric Touzet Compact leaves of codimension one holomorphic foliations on projective manifolds, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 6, pp. 1457-1506 | DOI | MR | Zbl

[4] Jean-Pierre Demailly Complex analytic and differential geometry (https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)

[5] Jean-Pierre Demailly Structure Theorems for Compact Kähler Manifolds with Nef Anticanonical Bundles, Complex analysis and geometry. KSCV 10 (Springer Proceedings in Mathematics & Statistics), Volume 144, Springer, 2015, pp. 119-133 | DOI | Zbl

[6] Jean-Pierre Demailly; Thomas Peternell; Michael Schneider Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl

[7] Takao Fujita Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, 155, London Mathematical Society, 1990 | DOI

[8] Kunihiko Kodaira; Donald C. Spencer A theorem of completeness of characteristic systems of complete continuous systems, Am. J. Math., Volume 81 (1959), pp. 477-500 | DOI | MR

[9] Takayuki Koike On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated, Ann. Inst. Fourier, Volume 65 (2015) no. 5, pp. 1953-1967 | DOI | Numdam | MR | Zbl

[10] Takayuki Koike On the minimality of canonically attached singular Hermitian metrics on certain nef line bundles, Kyoto J. Math., Volume 55 (2015) no. 3, pp. 607-616 | MR | Zbl

[11] Takayuki Koike Toward a higher codimensional Ueda theory, Math. Z., Volume 281 (2015) no. 3-4, pp. 967-991 | DOI | MR | Zbl

[12] Takayuki Koike Ueda theory for compact curves with nodes, Indiana Univ. Math. J., Volume 66 (2017) no. 3, pp. 845-876 | DOI | MR | Zbl

[13] Takayuki Koike Higher codimensional Ueda theory for a compact submanifold with unitary flat normal bundle, Nagoya Math. J., Volume 238 (2018), pp. 104-136 | DOI | MR | Zbl

[14] Takayuki Koike Plurisubharmonic functions on a neighborhood of a torus leaf of a certain class of foliations, Forum Math., Volume 31 (2019) no. 6, pp. 1457-1466 | DOI | MR

[15] Takayuki Koike; Noboru Ogawa Local criteria for non embeddability of Levi-flat manifolds, J. Geom. Anal., Volume 28 (2018) no. 2, pp. 1052-1077 | DOI | MR | Zbl

[16] Takayuki Koike; Noboru Ogawa On the neighborhood of a torus leaf and dynamics of holomorphic foliations (2018) (https://arxiv.org/abs/1808.10219)

[17] Takayuki Koike; Takato Uehara A gluing construction of K3 surfaces (2019) (https://arxiv.org/abs/1903.01444)

[18] Amnon Neeman Ueda theory: theorems and problems, Memoirs of the American Mathematical Society, American Mathematical Society, 1989 no. 415, 123 pages

[19] Carl L. Siegel Iterations of analytic functions, Ann. Math., Volume 43 (1942), pp. 607-612 | DOI | MR

[20] Yum-Tong Siu Every Stein subvariety admits a Stein neighborhood, Invent. Math., Volume 38 (1976), pp. 89-100 | MR | Zbl

[21] Tetsuo Ueda On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., Volume 22 (1983), pp. 583-607 | MR

[22] Tetsuo Ueda Neighborhood of a rational curve with a node, Publ. Res. Inst. Math. Sci., Volume 27 (1991) no. 4, pp. 681-693 | DOI | MR | Zbl

Cited by Sources: