Let be a smooth proper -linear triangulated category which is -Calabi–Yau endowed with a (non-trivial) rank function. Using the homological unit of with respect to the given rank function, we define Hodge numbers for .
If the classes of unitary objects generate the rational numerical -theory of , it is proved that these numbers are independent of the chosen rank function : they are intrinsic invariants of the triangulated category .
In the special case where is a semi-orthogonal component of the derived category of a smooth complex projective variety and the homological unit of is , we define a Hodge structure on the Hochschild homology of . The dimensions of the Hodge spaces of this structure are the Hodge numbers aforementioned.
Finally, we give some numerical applications toward the Homological Mirror Symmetry conjecture for cubic sevenfolds and double quartic fivefolds.
Soit une catégorie triangulée -linéaire, non singulière et propre, que l’on suppose être -Calabi–Yau et munie d’une fonction rang non-triviale. En nous basant sur la notion d’unité homologique pour associée à la fonction rang, nous définissons des nombres de Hodge pour .
Si les classes d’objets unitaires engendrent la -théorie numérique de , nous prouvons que ces nombres ne dépendent pas de la fonction rang choisie : ce sont alors des invariants intrinsèques de la catégorie .
Dans le cas particulier où est une composante semi-orthogonale de la catégorie dérivée d’une variété projective non singulière définie sur et que l’unité homologique de est , nous définissons une structure de Hodge sur l’homologie d’Hochschild de . Les dimensions des espaces de Hodge associés à cette structure sont les nombres de Hodge déjà mentionnés.
En conclusion, nous donnons quelques applications numériques de notre théorie en direction de la conjecture de Symétrie Miroir Homologique pour les hypersurfaces cubiques de dimension et les recouvrements doubles quartiques de .
Accepted:
Published online:
Keywords: Calabi–Yau categories, Hodge theory of non-commutative spaces, numerical invariants of triangulated categories.
Keywords: Catégories de Calabi–Yau, Théorie de Hodge pour les variétés non-commutatives, invariants numériques des catégories triangulées.
Roland Abuaf 1
@article{AFST_2023_6_32_2_337_0, author = {Roland Abuaf}, title = {Hodge numbers and {Hodge} structures for {3-Calabi{\textendash}Yau} categories}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {337--369}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {2}, year = {2023}, doi = {10.5802/afst.1739}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1739/} }
TY - JOUR AU - Roland Abuaf TI - Hodge numbers and Hodge structures for 3-Calabi–Yau categories JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 337 EP - 369 VL - 32 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1739/ DO - 10.5802/afst.1739 LA - en ID - AFST_2023_6_32_2_337_0 ER -
%0 Journal Article %A Roland Abuaf %T Hodge numbers and Hodge structures for 3-Calabi–Yau categories %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 337-369 %V 32 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1739/ %R 10.5802/afst.1739 %G en %F AFST_2023_6_32_2_337_0
Roland Abuaf. Hodge numbers and Hodge structures for 3-Calabi–Yau categories. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 337-369. doi : 10.5802/afst.1739. https://afst.centre-mersenne.org/articles/10.5802/afst.1739/
[1] A geometric criterion for generating the Fukaya category, Publ. Math., Inst. Hautes Étud. Sci., Volume 112 (2010) no. 1, pp. 191-240 | DOI | Numdam | MR | Zbl
[2] Homological Units, Int. Math. Res. Not., Volume 2017 (2017) no. 22, pp. 6943-6960 | MR | Zbl
[3] On quartic double fivefolds and the matrix factorizations of exceptional quaternionic representations, Ann. Inst. Fourier, Volume 70 (2020) no. 4, pp. 1403-1430 | DOI | Numdam | MR | Zbl
[4] Hodge theory and derived categories of cubic fourfolds, Duke Math. J., Volume 163 (2014) no. 10, pp. 1885-1927 | MR | Zbl
[5] Moduli stabilization in non-geometric backgrounds, Nucl. Phys., B, Volume 770 (2007) no. 1-2, pp. 1-46 | DOI | MR | Zbl
[6] Generalized Calabi–Yau Manifolds and the Mirror of a Rigid Manifold, Nucl. Phys., B, Volume 407 (1993), pp. 115-154 | DOI | MR | Zbl
[7] Calabi–Yau algebras (2006) (https://arxiv.org/abs/math/0612139)
[8] Geometric Phantom Categories, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013) no. 1, pp. 329-349 | DOI | Numdam | MR | Zbl
[9] On the periods of certain rational integrals. I, II, Ann. Math., Volume 90 (1969), p. 460-495, 496–541 | DOI | MR | Zbl
[10] Hodge numbers of Landau–Ginzburg models, Adv. Math., Volume 378 (2021), 107436, p. 41 | MR | Zbl
[11] The K3 category of a cubic fourfold, Compos. Math., Volume 153 (2017) no. 3, pp. 586-620 | DOI | MR | Zbl
[12] On cubic hypersurfaces of dimensions 7 and 8, Proc. Lond. Math. Soc., Volume 108 (2013) no. 2, pp. 517-540 | DOI | MR | Zbl
[13] Fano Manifolds of Calabi–Yau type, J. Pure Appl. Algebra, Volume 219 (2015) no. 6, pp. 2225-2244 | DOI | MR | Zbl
[14] Non-commutative Hodge-to-de Rham degeneration via the method of Deligne-Illusie, Pure Appl. Math. Q., Volume 4 (2008) no. 3, pp. 785-875 (Special Issue: In honor of Fedor Bogomolov. Part 2) | DOI | MR | Zbl
[15] Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT tt*-geometry (Proceedings of Symposia in Pure Mathematics), Volume 78, American Mathematical Society, 2008, pp. 87-174 | DOI | MR | Zbl
[16] Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models, J. Differ. Geom., Volume 105 (2017) no. 1, pp. 55-117 | MR | Zbl
[17] Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl
[18] Deformed Calabi–Yau Completions, J. Reine Angew. Math., Volume 654 (2011), pp. 125-180 | MR | Zbl
[19] Derived equivalences from mutations of quivers with potential, Adv. Math., Volume 226 (2011) no. 3, pp. 2118-2168 | DOI | MR | Zbl
[20] The Homological Algebra of Mirror Symmetry (1994) (https://arxiv.org/abs/alg-geom/9411018)
[21] Hochschild homology and semi-orthogonal decompositions (2009) (https://arxiv.org/abs/0904.4330)
[22] Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems (Progress in Mathematics), Volume 282, Birkhäuser, 2010, pp. 219-243 | DOI | MR | Zbl
[23] Calabi–Yau and fractional Calabi–Yau categories, J. Reine Angew. Math., Volume 753 (2019), pp. 239-267 | DOI | MR | Zbl
[24] Symplectic structures on moduli spaces of sheaves via the Atiyah class, J. Geom. Phys., Volume 59 (2009) no. 7, pp. 843-860 | DOI | MR | Zbl
[25] Landau–Ginzburg Hodge numbers for mirrors of del Pezzo surfaces, Adv. Math., Volume 329 (2018), pp. 189-216 | DOI | MR | Zbl
[26] Derived Categories of Coherent Sheaves and Triangulated Categories of Singularities, Algebra, Arithmetic, and Geometry: Volume II: In Honor of Yu. I. Manin (Progress in Mathematics), Volume 270, Birkhäuser, 2009, pp. 503-531 | DOI | MR | Zbl
[27] Remarks on generators and dimensions of triangulated categories, Mosc. Math. J., Volume 9 (2009) no. 1, pp. 143-149 | DOI | MR | Zbl
[28] structures associated with pairs of -spherical objects and non-commutative orders over curves, Trans. Am. Math. Soc., Volume 373 (2020) no. 9, pp. 6029-6093 | DOI | Zbl
[29] Chern characters and Hirzebruch–Riemann–Roch formula for matrix factorizations, Duke Math. J., Volume 161 (2012) no. 10, pp. 1863-1926 | MR | Zbl
[30] Categorical mirror symmetry : The elliptic curve, Adv. Theor. Math. Phys., Volume 2 (1998) no. 2, pp. 443-470 | DOI | MR | Zbl
[31] Mirror Symmetry and String Vacua from a Special Class of Fano Varieties, Int. J. Mod. Phys. A, Volume 11 (1996) no. 17, pp. 3049-3096 | DOI | MR | Zbl
[32] Homological Mirror Symmetry for the Quartic Surface, Memoirs of the American Mathematical Society, 1116, American Mathematical Society, 2015 | Zbl
[33] Homological mirror symmetry for generalized Greene–Plesser mirrors, Invent. Math., Volume 224 (2021) no. 2, pp. 627-682 | DOI | MR | Zbl
[34] Intersection form for quasi-homogeneous singularities, Compos. Math., Volume 34 (1977), pp. 211-223 | Numdam | MR | Zbl
[35] The Hilton–Heckmann argument for the anti-commutativity of cup products, Proc. Am. Math. Soc., Volume 132 (2004) no. 8, pp. 2241-2246 | DOI | MR | Zbl
[36] Seidel’s mirror map for the torus, Adv. Theor. Math. Phys., Volume 9 (2005) no. 6, pp. 999-1006 | DOI | MR | Zbl
Cited by Sources: