We study representations where is either a simple Lie group with real rank at least 2 or an infinite dimensional orthogonal group of some quadratic form of finite index at least 2 and is such an orthogonal group as well. The real, complex and quaternionic cases are considered. Contrarily to the rank one case, we show that there is no exotic such representations and we classify these representations.
On the way, we make a detour and prove that the projective orthogonal groups or their orthochronous component (where denotes the real, complex or quaternionic numbers) are Polish groups that are topologically simple but not abstractly simple.
Accepted:
Published online:
Bruno Duchesne 1
@article{AFST_2023_6_32_2_371_0, author = {Bruno Duchesne}, title = {Infinite dimensional representations of orthogonal groups of quadratic forms with finite index}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {371--396}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {2}, year = {2023}, doi = {10.5802/afst.1740}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1740/} }
TY - JOUR AU - Bruno Duchesne TI - Infinite dimensional representations of orthogonal groups of quadratic forms with finite index JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 371 EP - 396 VL - 32 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1740/ DO - 10.5802/afst.1740 LA - en ID - AFST_2023_6_32_2_371_0 ER -
%0 Journal Article %A Bruno Duchesne %T Infinite dimensional representations of orthogonal groups of quadratic forms with finite index %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 371-396 %V 32 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1740/ %R 10.5802/afst.1740 %G en %F AFST_2023_6_32_2_371_0
Bruno Duchesne. Infinite dimensional representations of orthogonal groups of quadratic forms with finite index. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 371-396. doi : 10.5802/afst.1740. https://afst.centre-mersenne.org/articles/10.5802/afst.1740/
[1] Centers of convex subsets of buildings, Ann. Global Anal. Geom., Volume 28 (2005) no. 2, pp. 201-209 | DOI | MR | Zbl
[2] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR
[3] Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. (2005) no. 22, pp. 1331-1369 | DOI | MR | Zbl
[4] Sur les groupes de transformations birationnelles des surfaces, Ann. Math., Volume 174 (2011) no. 1, pp. 299-340 | DOI | MR | Zbl
[5] Amenable groups and Hadamard spaces with a totally disconnected isometry group, Comment. Math. Helv., Volume 84 (2009) no. 2, pp. 437-455 | DOI | MR | Zbl
[6] At infinity of finite-dimensional CAT(0) spaces, Math. Ann., Volume 346 (2010) no. 1, pp. 1-21 | DOI | MR | Zbl
[7] Isometry groups of non-positively curved spaces: discrete subgroups, J. Topol., Volume 2 (2009) no. 4, pp. 701-746 | DOI | MR | Zbl
[8] Isometry groups of non-positively curved spaces: structure theory, J. Topol., Volume 2 (2009) no. 4, pp. 661-700 | DOI | MR | Zbl
[9] Fixed points and amenability in non-positive curvature, Math. Ann., Volume 356 (2013) no. 4, pp. 1303-1337 | DOI | MR | Zbl
[10] On Convex Subcomplexes of Spherical Buildings and Tits Center Conjecture, Ph. D. Thesis, Ludwig-Maximilians-Universität München (2009) http://nbn-resolving.de/urn:nbn:de:bvb:19-110050
[11] Kähler groups, real hyperbolic spaces and the Cremona group, Compos. Math., Volume 148 (2012) no. 1, pp. 153-184 | DOI | MR | Zbl
[12] Les déterminants sur un corps non commutatif, Bull. Soc. Math. Fr., Volume 71 (1943), pp. 27-45 | DOI | Numdam | Zbl
[13] Infinite-dimensional nonpositively curved symmetric spaces of finite rank, Int. Math. Res. Not., Volume 2013 (2013) no. 7, pp. 1578-1627 | DOI | MR | Zbl
[14] Infinite-dimensional Riemannian symmetric spaces with fixed-sign curvature operator, Ann. Inst. Fourier, Volume 65 (2015) no. 1, pp. 211-244 | DOI | Numdam | MR | Zbl
[15] Superrigidity in infinite dimension and finite rank via harmonic maps, Groups Geom. Dyn., Volume 9 (2015) no. 1, pp. 133-148 | DOI | MR | Zbl
[16] Geometric density for invariant random subgroups of groups acting on CAT(0) spaces, Geom. Dedicata, Volume 175 (2015), pp. 249-256 | DOI | MR | Zbl
[17] Boundary maps and maximal representations on infinite dimensional Hermitian symmetric spaces (2018) (https://arxiv.org/abs/1810.10208)
[18] Classical Banach–Lie algebras and Banach–Lie groups of operators in Hilbert space, Lecture Notes in Mathematics, 285, Springer, 1972, iii+160 pages | DOI | Numdam | MR
[19] Unitary representations of the Lorentz group in a space with indefinite metric, Sov. Math., Dokl., Volume 5 (1965), pp. 1217-1219 | MR
[20] Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer, 1995, xviii+402 pages | DOI | MR
[21] The local structure of length spaces with curvature bounded above, Math. Z., Volume 231 (1999) no. 3, pp. 409-456 | DOI | MR | Zbl
[22] Representation theory of semisimple groups. An overview based on examples, Princeton Landmarks in Mathematics, Princeton University Press, 2001
[23] Fundamentals of differential geometry, Graduate Texts in Mathematics, 191, Springer, 1999, xviii+535 pages | DOI | MR
[24] A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften, 326, Universität Bonn Mathematisches Institut, 2000, ii+42 pages | MR
[25] Superrigidity for irreducible lattices and geometric splitting, J. Am. Math. Soc., Volume 19 (2006) no. 4, pp. 781-814 | DOI | MR | Zbl
[26] Notes on functions of hyperbolic type (2018) (https://arxiv.org/abs/1807.04157)
[27] An exotic deformation of the hyperbolic space, Am. J. Math., Volume 136 (2014) no. 5, pp. 1249-1299 | DOI | MR | Zbl
[28] Self-representations of the Möbius group, Ann. Henri Lebesgue, Volume 2 (2019), pp. 259-280 | DOI | Numdam | Zbl
[29] Introduction to arithmetic groups, Deductive Press, 2015, xii+475 pages | MR
[30] Some new decomposition theorems for semi-simple groups, Mem. Am. Math. Soc., Volume 14 (1955), pp. 31-54 | MR | Zbl
[31] The center conjecture for non-exceptional buildings, J. Algebra, Volume 300 (2006) no. 2, pp. 687-706 | DOI | MR | Zbl
[32] Unitary representations of the Lorentz group in the space , Sov. Math., Dokl., Volume 4 (1963), pp. 1508-1511
[33] Unitary representations of the infinite-dimensional classical groups , , , and of the corresponding motion groups, Funkts. Anal. Prilozh., Volume 12 (1978) no. 3, pp. 32-44 | MR
[34] Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, 2006, xvi+401 pages | MR
[35] Hyperbolic spaces, principal series and (2018) (https://arxiv.org/abs/1812.03782)
[36] New proof of Naimark’s theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces, Volume 109, 1990 no. 2, pp. 153-156 | MR | Zbl
[37] Complète réductibilité, Bourbaki seminar. Volume 2003/2004. Exposes 924–937 (Astérisque), Volume 299, Société Mathématique de France, 2005, pp. 195-217 (Exp. No. 932) | Numdam | Zbl
[38] Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, 386, Springer, 1974, x+299 pages | MR
Cited by Sources: