Infinite dimensional representations of orthogonal groups of quadratic forms with finite index
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 371-396.

We study representations GH where G is either a simple Lie group with real rank at least 2 or an infinite dimensional orthogonal group of some quadratic form of finite index at least 2 and H is such an orthogonal group as well. The real, complex and quaternionic cases are considered. Contrarily to the rank one case, we show that there is no exotic such representations and we classify these representations.

On the way, we make a detour and prove that the projective orthogonal groups PO K (p,) or their orthochronous component (where K denotes the real, complex or quaternionic numbers) are Polish groups that are topologically simple but not abstractly simple.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1740

Bruno Duchesne 1

1 Institut Élie Cartan, UMR 7502, Université de Lorraine et CNRS, Nancy, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_2_371_0,
     author = {Bruno Duchesne},
     title = {Infinite dimensional representations of orthogonal groups of quadratic forms with finite index},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {371--396},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {2},
     year = {2023},
     doi = {10.5802/afst.1740},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1740/}
}
TY  - JOUR
AU  - Bruno Duchesne
TI  - Infinite dimensional representations of orthogonal groups of quadratic forms with finite index
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 371
EP  - 396
VL  - 32
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1740/
DO  - 10.5802/afst.1740
LA  - en
ID  - AFST_2023_6_32_2_371_0
ER  - 
%0 Journal Article
%A Bruno Duchesne
%T Infinite dimensional representations of orthogonal groups of quadratic forms with finite index
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 371-396
%V 32
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1740/
%R 10.5802/afst.1740
%G en
%F AFST_2023_6_32_2_371_0
Bruno Duchesne. Infinite dimensional representations of orthogonal groups of quadratic forms with finite index. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 371-396. doi : 10.5802/afst.1740. https://afst.centre-mersenne.org/articles/10.5802/afst.1740/

[1] Andreas Balser; Alexander Lytchak Centers of convex subsets of buildings, Ann. Global Anal. Geom., Volume 28 (2005) no. 2, pp. 201-209 | DOI | MR | Zbl

[2] Martin R. Bridson; André Haefliger Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR

[3] Marc Burger; Alessandra Iozzi; Nicolas Monod Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. (2005) no. 22, pp. 1331-1369 | DOI | MR | Zbl

[4] Serge Cantat Sur les groupes de transformations birationnelles des surfaces, Ann. Math., Volume 174 (2011) no. 1, pp. 299-340 | DOI | MR | Zbl

[5] Pierre-Emmanuel Caprace Amenable groups and Hadamard spaces with a totally disconnected isometry group, Comment. Math. Helv., Volume 84 (2009) no. 2, pp. 437-455 | DOI | MR | Zbl

[6] Pierre-Emmanuel Caprace; Alexander Lytchak At infinity of finite-dimensional CAT(0) spaces, Math. Ann., Volume 346 (2010) no. 1, pp. 1-21 | DOI | MR | Zbl

[7] Pierre-Emmanuel Caprace; Nicolas Monod Isometry groups of non-positively curved spaces: discrete subgroups, J. Topol., Volume 2 (2009) no. 4, pp. 701-746 | DOI | MR | Zbl

[8] Pierre-Emmanuel Caprace; Nicolas Monod Isometry groups of non-positively curved spaces: structure theory, J. Topol., Volume 2 (2009) no. 4, pp. 661-700 | DOI | MR | Zbl

[9] Pierre-Emmanuel Caprace; Nicolas Monod Fixed points and amenability in non-positive curvature, Math. Ann., Volume 356 (2013) no. 4, pp. 1303-1337 | DOI | MR | Zbl

[10] Carlos Ramos Cuevas On Convex Subcomplexes of Spherical Buildings and Tits Center Conjecture, Ph. D. Thesis, Ludwig-Maximilians-Universität München (2009) http://nbn-resolving.de/urn:nbn:de:bvb:19-110050

[11] Thomas Delzant; Pierre Py Kähler groups, real hyperbolic spaces and the Cremona group, Compos. Math., Volume 148 (2012) no. 1, pp. 153-184 | DOI | MR | Zbl

[12] Jean Dieudonné Les déterminants sur un corps non commutatif, Bull. Soc. Math. Fr., Volume 71 (1943), pp. 27-45 | DOI | Numdam | Zbl

[13] Bruno Duchesne Infinite-dimensional nonpositively curved symmetric spaces of finite rank, Int. Math. Res. Not., Volume 2013 (2013) no. 7, pp. 1578-1627 | DOI | MR | Zbl

[14] Bruno Duchesne Infinite-dimensional Riemannian symmetric spaces with fixed-sign curvature operator, Ann. Inst. Fourier, Volume 65 (2015) no. 1, pp. 211-244 | DOI | Numdam | MR | Zbl

[15] Bruno Duchesne Superrigidity in infinite dimension and finite rank via harmonic maps, Groups Geom. Dyn., Volume 9 (2015) no. 1, pp. 133-148 | DOI | MR | Zbl

[16] Bruno Duchesne; Yair Glasner; Nir Lazarovich; Jean Lécureux Geometric density for invariant random subgroups of groups acting on CAT(0) spaces, Geom. Dedicata, Volume 175 (2015), pp. 249-256 | DOI | MR | Zbl

[17] Bruno Duchesne; Jean Lecureux; Maria Beatrice Pozzetti Boundary maps and maximal representations on infinite dimensional Hermitian symmetric spaces (2018) (https://arxiv.org/abs/1810.10208)

[18] Pierre de la Harpe Classical Banach–Lie algebras and Banach–Lie groups of operators in Hilbert space, Lecture Notes in Mathematics, 285, Springer, 1972, iii+160 pages | DOI | Numdam | MR

[19] Rais S. Ismagilov Unitary representations of the Lorentz group in a space with indefinite metric, Sov. Math., Dokl., Volume 5 (1965), pp. 1217-1219 | MR

[20] Alexander S. Kechris Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer, 1995, xviii+402 pages | DOI | MR

[21] Bruce Kleiner The local structure of length spaces with curvature bounded above, Math. Z., Volume 231 (1999) no. 3, pp. 409-456 | DOI | MR | Zbl

[22] Anthony W. Knapp Representation theory of semisimple groups. An overview based on examples, Princeton Landmarks in Mathematics, Princeton University Press, 2001

[23] Serge Lang Fundamentals of differential geometry, Graduate Texts in Mathematics, 191, Springer, 1999, xviii+535 pages | DOI | MR

[24] Bernhard Leeb A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften, 326, Universität Bonn Mathematisches Institut, 2000, ii+42 pages | MR

[25] Nicolas Monod Superrigidity for irreducible lattices and geometric splitting, J. Am. Math. Soc., Volume 19 (2006) no. 4, pp. 781-814 | DOI | MR | Zbl

[26] Nicolas Monod Notes on functions of hyperbolic type (2018) (https://arxiv.org/abs/1807.04157)

[27] Nicolas Monod; Pierre Py An exotic deformation of the hyperbolic space, Am. J. Math., Volume 136 (2014) no. 5, pp. 1249-1299 | DOI | MR | Zbl

[28] Nicolas Monod; Pierre Py Self-representations of the Möbius group, Ann. Henri Lebesgue, Volume 2 (2019), pp. 259-280 | DOI | Numdam | Zbl

[29] Dave Witte Morris Introduction to arithmetic groups, Deductive Press, 2015, xii+475 pages | MR

[30] George D. Mostow Some new decomposition theorems for semi-simple groups, Mem. Am. Math. Soc., Volume 14 (1955), pp. 31-54 | MR | Zbl

[31] Bernhard Mühlherr; Jacques Tits The center conjecture for non-exceptional buildings, J. Algebra, Volume 300 (2006) no. 2, pp. 687-706 | DOI | MR | Zbl

[32] Mark A. Naĭmark Unitary representations of the Lorentz group in the space Π k , Sov. Math., Dokl., Volume 4 (1963), pp. 1508-1511

[33] Grigoriĭ I. Ol’shanskiĭ Unitary representations of the infinite-dimensional classical groups U(p,), SO 0 (p,), Sp(p,), and of the corresponding motion groups, Funkts. Anal. Prilozh., Volume 12 (1978) no. 3, pp. 32-44 | MR

[34] Peter Petersen Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, 2006, xvi+401 pages | MR

[35] Pierre Py; Arturo Sánchez Hyperbolic spaces, principal series and O(2,) (2018) (https://arxiv.org/abs/1812.03782)

[36] Zoltán Sasvári New proof of Naimark’s theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces, Volume 109, 1990 no. 2, pp. 153-156 | MR | Zbl

[37] Jean-Pierre Serre Complète réductibilité, Bourbaki seminar. Volume 2003/2004. Exposes 924–937 (Astérisque), Volume 299, Société Mathématique de France, 2005, pp. 195-217 (Exp. No. 932) | Numdam | Zbl

[38] Jacques Tits Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, 386, Springer, 1974, x+299 pages | MR

Cited by Sources: