We describe the Hodge theory of brilliant families of K3 surfaces. Their characteristic feature is a close link between the Hodge structures of any two fibres over points in the Noether–Lefschetz locus. Twistor deformations, the analytic Tate–Šafarevič group, and certain one-dimensional Shimura special cycles are covered by the theory. In this setting, the Brauer group is viewed as the Noether–Lefschetz locus of the Brauer family or as the specialization of the Noether–Lefschetz loci in a family of approaching twistor spaces. Passing from one algebraic twistor fibre to another, which by construction is a transcendental operation, is here viewed as first deforming along the more algebraic Brauer family and then along a family of algebraic K3 surfaces.
On étudie la théorie de Hodge des familles brillantes des surfaces K3. Deux fibres dans le lieu de Noether–Lefschetz d’une telle famille ont des structures de Hodge très similaires. Les déformations de twisteurs, le groupe de Tate–Šafarevič et certaines courbes de Shimura donnent des exemples de telles familles. Dans ce cadre le groupe de Brauer apparaît comme lieu de Noether–Lefschetz de la famille de Brauer et aussi comme spécialisation des lieux de Noether–Lefschetz des espaces de twisteurs. Le passage transcendent d’une fibre algébrique à une autre dans l’espace de twisteur est vu comme composition de deux déformations du caractère plus algébriques.
Accepted:
Published online:
Daniel Huybrechts 1
@article{AFST_2023_6_32_2_397_0, author = {Daniel Huybrechts}, title = {Brilliant families of {K3} surfaces: {Twistor} spaces, {Brauer} groups, and {Noether{\textendash}Lefschetz} loci}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {397--421}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {2}, year = {2023}, doi = {10.5802/afst.1741}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1741/} }
TY - JOUR AU - Daniel Huybrechts TI - Brilliant families of K3 surfaces: Twistor spaces, Brauer groups, and Noether–Lefschetz loci JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 397 EP - 421 VL - 32 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1741/ DO - 10.5802/afst.1741 LA - en ID - AFST_2023_6_32_2_397_0 ER -
%0 Journal Article %A Daniel Huybrechts %T Brilliant families of K3 surfaces: Twistor spaces, Brauer groups, and Noether–Lefschetz loci %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 397-421 %V 32 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1741/ %R 10.5802/afst.1741 %G en %F AFST_2023_6_32_2_397_0
Daniel Huybrechts. Brilliant families of K3 surfaces: Twistor spaces, Brauer groups, and Noether–Lefschetz loci. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 2, pp. 397-421. doi : 10.5802/afst.1741. https://afst.centre-mersenne.org/articles/10.5802/afst.1741/
[1] MMP for moduli of sheaves on s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math., Volume 198 (2014) no. 3, pp. 505-590 | DOI | MR | Zbl
[2] Twistor spaces for supersingular surfaces (2018) (https://arxiv.org/abs/1804.07282)
[3] Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 27, Springer, 1994 | DOI
[4] Compact hyperkähler manifolds: Basic results, Invent. Math., Volume 135 (1999) no. 1, pp. 63-113 | DOI | Zbl
[5] The global Torelli theorem: classical, derived, twisted, Algebraic geometry, Seattle 2005 (Proceedings of Symposia in Pure Mathematics), Volume 80.1, American Mathematical Society, 2009, pp. 235-258 | Zbl
[6] Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, 2016 | DOI
[7] Motives of isogenous surfaces, Comment. Math. Helv., Volume 94 (2019) no. 3, pp. 445-458 | DOI | MR | Zbl
[8] Complex multiplication in twistor spaces, Int. Math. Res. Not., Volume 2021 (2021) no. 24, pp. 18972-18999 | Zbl
[9] Equivalences of twisted surfaces, Math. Ann., Volume 332 (2005) no. 4, pp. 901-936 | DOI | MR | Zbl
[10] Lagrangian fibrations of holomorphic-symplectic varieties of -type, Algebraic and complex geometry (Springer Proceedings in Mathematics & Statistics), Volume 71, Springer, 2014, pp. 241-283 | DOI | MR | Zbl
[11] The weight-two Hodge structure of moduli spaces of sheaves on a surface, J. Algebr. Geom., Volume 6 (1997) no. 4, pp. 599-644 | MR | Zbl
[12] Moduli spaces of bundles over non-projective surfaces, Kyoto J. Math., Volume 57 (2017) no. 1, pp. 107-146 | Zbl
[13] Lines on Fermat surfaces, J. Number Theory, Volume 130 (2010) no. 9, pp. 1939-1963 | DOI | MR | Zbl
[14] Real multiplication on surfaces and Kuga–Satake varieties, Mich. Math. J., Volume 56 (2008) no. 2, pp. 375-399 | MR | Zbl
[15] Degenerate twistor spaces for hyperkähler manifolds, J. Geom. Phys., Volume 91 (2015), pp. 2-11 | DOI | Zbl
[16] Complex multiplication and Noether–Lefschetz loci of the twistor space of a surface (2021) (https://arxiv.org/abs/2102.07285)
[17] Hodge groups of surfaces, J. Reine Angew. Math., Volume 341 (1983), pp. 193-220 | MR | Zbl
Cited by Sources: