Inhomogeneous spin q-Whittaker polynomials
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 1-68.

We introduce and study an inhomogeneous generalization of the spin q-Whittaker polynomials from [15]. These are symmetric polynomials, and we prove a branching rule, skew dual and non-dual Cauchy identities, and an integral representation for them. Our main tool is a novel family of deformed Yang–Baxter equations.

Nous introduisons et étudions une généralisation inhomogène des polynômes spin de q-Whittaker de [15]. Ce sont des polynômes symétriques, et nous prouvons une règle de branchement, des identités de Cauchy asymétriques duales et non duales, et une représentation intégrale pour ces polynômes. Nous prouvons une règle de branchement, des identités de Cauchy asymétriques, duales et non-duelles, et une représentation intégrale pour ces polynômes. Notre outil principal est une nouvelle famille d’équations de Yang–Baxter déformées.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1761

Alexei Borodin 1; Sergei Korotkikh 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA 02139, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_1_1_0,
     author = {Alexei Borodin and Sergei Korotkikh},
     title = {Inhomogeneous spin $q${-Whittaker} polynomials},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1--68},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {1},
     year = {2024},
     doi = {10.5802/afst.1761},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1761/}
}
TY  - JOUR
AU  - Alexei Borodin
AU  - Sergei Korotkikh
TI  - Inhomogeneous spin $q$-Whittaker polynomials
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 1
EP  - 68
VL  - 33
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1761/
DO  - 10.5802/afst.1761
LA  - en
ID  - AFST_2024_6_33_1_1_0
ER  - 
%0 Journal Article
%A Alexei Borodin
%A Sergei Korotkikh
%T Inhomogeneous spin $q$-Whittaker polynomials
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 1-68
%V 33
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1761/
%R 10.5802/afst.1761
%G en
%F AFST_2024_6_33_1_1_0
Alexei Borodin; Sergei Korotkikh. Inhomogeneous spin $q$-Whittaker polynomials. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 1-68. doi : 10.5802/afst.1761. https://afst.centre-mersenne.org/articles/10.5802/afst.1761/

[1] Amol Aggarwal Current fluctuations of the stationary ASEP and six-vertex model, Duke Math. J., Volume 167 (2018) no. 2, pp. 269-384 | Zbl

[2] Amol Aggarwal; Alexei Borodin Phase transitions in the ASEP and stochastic six-vertex model, Ann. Probab., Volume 47 (2019) no. 2, pp. 613-689 | Zbl

[3] Guillaume Barraquand; Ivan Corwin Random walk in beta-distributed random environment, Probab. Theory Relat. Fields, Volume 167 (2017) no. 3, pp. 1057-1116 | DOI | Zbl

[4] Alexei Borodin On a family of symmetric rational functions, Adv. Math., Volume 306 (2017), pp. 973-1018 | DOI | Zbl

[5] Alexei Borodin Symmetric elliptic functions, IRF models, and dynamic exclusion processes, J. Eur. Math. Soc., Volume 22 (2020) no. 5, pp. 1353-1421 | DOI | Zbl

[6] Alexei Borodin; Ivan Corwin; Leonid Petrov; Tomohiro Sasamoto Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz, Commun. Math. Phys., Volume 339 (2015) no. 3, pp. 1167-1245 | DOI | Zbl

[7] Alexei Borodin; Ivan Corwin; Leonid Petrov; Tomohiro Sasamoto Spectral theory for the q-Boson particle system, Compos. Math., Volume 151 (2015) no. 1, pp. 1-67 | DOI | Zbl

[8] Alexei Borodin; Vadim Gorin; Michael Wheeler Shift-invariance for vertex models and polymers (2019) (https://arxiv.org/abs/1912.02957)

[9] Alexei Borodin; Leonid Petrov Integrable probability: Stochastic vertex models and symmetric functions, Stochastic Processes and Random Matrices: Lecture Notes of the Les Houches Summer School (Les Houches, 2015), Volume 104, Oxford University Press, 2017, pp. 26-131 | DOI | Zbl

[10] Alexei Borodin; Leonid Petrov Higher spin six vertex model and symmetric rational functions, Sel. Math., New Ser., Volume 24 (2018) no. 2, pp. 751-874 | DOI | Zbl

[11] Alexei Borodin; Leonid Petrov Inhomogeneous exponential jump model, Probab. Theory Relat. Fields, Volume 172 (2018) no. 1-2, pp. 323-385 | DOI | Zbl

[12] Alexei Borodin; Michael Wheeler Coloured stochastic vertex models and their spectral theory (2018) (https://arxiv.org/abs/1808.01866)

[13] Alexei Borodin; Michael Wheeler Nonsymmetric Macdonald polynomials via integrable vertex models (2019) (https://arxiv.org/abs/1904.06804, to appear in Trans. Am. Math. Soc.)

[14] Alexei Borodin; Michael Wheeler Observables of coloured stochastic vertex models and their polymer limits, Probab. Math. Phys., Volume 1 (2020) no. 1, pp. 205-265 | DOI | Zbl

[15] Alexei Borodin; Michael Wheeler Spin q-Whittaker polynomials, Adv. Math., Volume 376 (2020), 107449, 51 pages | DOI | Zbl

[16] Gary Bosnjak; Vladimir Mangazeev Construction of R-matrices for symmetric tensor representations related to U q (sl n ^), J. Phys. A. Math. Theor., Volume 49 (2016) no. 49, 495204, 19 pages | Zbl

[17] Ben Brubaker; Daniel Bump; Solomon Friedberg Schur Polynomials and The Yang-Baxter Equation, Commun. Math. Phys., Volume 308 (2011) no. 2, pp. 281-301 | DOI | Zbl

[18] Valentin Buciumas; Travis Scrimshaw Double Grothendieck polynomials and colored lattice models (2020) (https://arxiv.org/abs/2007.04533)

[19] Alexey Bufetov; Sergei Korotkikh Observables of stochastic colored vertex models and local relation (2020) (https://arxiv.org/abs/2011.11426)

[20] Alexey Bufetov; Matteo Mucciconi; Leonid Petrov Yang–Baxter random fields and stochastic vertex models (2019) (https://arxiv.org/abs/1905.06815)

[21] Luigi Cantini; Jan de Gier; Michael Wheeler Matrix product formula for Macdonald polynomials, J. Phys. A. Math. Theor., Volume 48 (2015) no. 38, 384001, 25 pages | Zbl

[22] Sergey Fomin; Anatol N. Kirillov The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 | DOI | Zbl

[23] Alexandr Garbali; Jan de Gier; Michael Wheeler A new generalisation of Macdonald polynomials, Commun. Math. Phys., Volume 352 (2017) no. 2, pp. 773-804 | DOI | Zbl

[24] Alexandr Garbali; Michael Wheeler Modified Macdonald polynomials and integrability, Commun. Math. Phys., Volume 374 (2020) no. 3, pp. 1809-1876 | DOI | Zbl

[25] Christian Korff Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra, Commun. Math. Phys., Volume 318 (2013) no. 1, pp. 173-246 | DOI | Zbl

[26] Sergei Korotkikh Hidden diagonal integrability of q-Hahn vertex model and Beta polymer model (2021) (https://arxiv.org/abs/2105.05058)

[27] Atsuo Kuniba; Vladimir Mangazeev; Shouya Maruyama; Masato Okado Stochastic R matrix for U q (A n (1) ), Nucl. Phys., B, Volume 913 (2016), pp. 248-277 | DOI

[28] Ian Grant Macdonald Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 1995, x+475 pages | DOI | Zbl

[29] Vladimir Mangazeev On the Yang-Baxter equation for the six-vertex model, Nucl. Phys., B, Volume 882 (2014), pp. 70-96 | DOI | Zbl

[30] Kohei Motegi Combinatorial properties of symmetric polynomials from integrable vertex models in finite lattice, J. Math. Phys., Volume 58 (2017) no. 9, 091703, 23 pages | Zbl

[31] Kohei Motegi; Kazumitsu Sakai Vertex models, TASEP and Grothendieck polynomials, J. Phys. A. Math. Theor., Volume 46 (2013) no. 35, 355201, 26 pages | Zbl

[32] Matteo Mucciconi; Leonid Petrov Spin q-Whittaker polynomials and deformed quantum Toda (2020) (https://arxiv.org/abs/2003.14260)

[33] Leonid Petrov Refined Cauchy identity for spin Hall–Littlewood symmetric rational functions (2007) (https://arxiv.org/abs/2007.10886)

[34] John R. Stembridge A short proof of Macdonald’s conjecture for the root systems of type A, Proc. Am. Math. Soc., Volume 102 (1988) no. 4, pp. 777-785 | Zbl

[35] Natalia V. Tsilevich Quantum inverse scattering method for the q-boson model and symmetric functions, Funct. Anal. Appl., Volume 40 (2006) no. 3, pp. 207-217 | DOI | Zbl

[36] Michael Wheeler; Paul Zinn-Justin Refined Cauchy/Littlewood identities and six-vertex model partition functions. III. Deformed bosons, Adv. Math., Volume 299 (2016), pp. 543-600 | DOI | Zbl

[37] Michael Wheeler; Paul Zinn-Justin Hall polynomials, inverse Kostka polynomials and puzzles, J. Comb. Theory, Ser. A, Volume 159 (2018), pp. 107-163 | DOI | Zbl

[38] Paul Zinn-Justin Six-vertex, loop and tiling models: integrability and combinatorics (Habilitation thesis, http://www.lpthe.jussieu.fr/~pzinn/publi/hdr.pdf, https://arxiv.org/abs/0901.0665)

Cited by Sources: