Persisting entropy structure for nonlocal cross-diffusion systems
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 69-104.

For cross-diffusion systems possessing an entropy (i.e. a Lyapunov functional) we study nonlocal versions and exhibit sufficient conditions to ensure that the nonlocal version inherits the entropy structure. These nonlocal systems can be understood as population models per se or as approximation of the classical ones. With the preserved entropy, we can rigorously link the approximating nonlocal version to the classical local system. From a modelling perspective, this gives a way to prove a derivation of the model and, from a PDE perspective, this provides a regularisation scheme to prove the existence of solutions. A guiding example is the SKT model [22]. In this context, we answer positively the question raised by [12] for the derivation and thus complete the derivation.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1762

Helge Dietert 1; Ayman Moussa 2

1 Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG, F-75013 Paris, France. — Partly done while at: Institut für Mathematik, Universität Leipzig, D-04103 Leipzig, Germany
2 Sorbonne Université, CNRS, Université Paris Cité, Laboratoire Jacques-Louis Lions (LJLL), Département de Mathématiques et Applications (DMA), École Normale Supérieure (ENS-PSL), F-75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_1_69_0,
     author = {Helge Dietert and Ayman Moussa},
     title = {Persisting entropy structure for nonlocal cross-diffusion systems},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {69--104},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {1},
     year = {2024},
     doi = {10.5802/afst.1762},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1762/}
}
TY  - JOUR
AU  - Helge Dietert
AU  - Ayman Moussa
TI  - Persisting entropy structure for nonlocal cross-diffusion systems
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 69
EP  - 104
VL  - 33
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1762/
DO  - 10.5802/afst.1762
LA  - en
ID  - AFST_2024_6_33_1_69_0
ER  - 
%0 Journal Article
%A Helge Dietert
%A Ayman Moussa
%T Persisting entropy structure for nonlocal cross-diffusion systems
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 69-104
%V 33
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1762/
%R 10.5802/afst.1762
%G en
%F AFST_2024_6_33_1_69_0
Helge Dietert; Ayman Moussa. Persisting entropy structure for nonlocal cross-diffusion systems. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 69-104. doi : 10.5802/afst.1762. https://afst.centre-mersenne.org/articles/10.5802/afst.1762/

[1] Herbert Amann Erratum: “Dynamic theory of quasilinear parabolic systems. III. Global existence” [Math. Z. 202 (1989), no. 2, 219–250; MR1013086 (90i:35125)], Math. Z., Volume 205 (1990) no. 2, p. 331 | DOI | MR | Zbl

[2] Vincent Bansaye; Ayman Moussa; Felipe Muñoz-Hernández Stability of a cross-diffusion system and approximation by repulsive random walks: a duality approach (2021) | arXiv

[3] Mostafa Bendahmane; Thomas Lepoutre; Americo Marrocco; Benoît Perthame Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl., Volume 92 (2009) no. 6, pp. 651-667 http://www.sciencedirect.com/science/article/pii/s0021782409000592 | DOI | Zbl

[4] Andrea Braides Local Minimization, Variational Evolution and Γ-Convergence, Lecture Notes in Mathematics, Springer, 2014, xi+174 pages | DOI

[5] Li Chen; Esther S. Daus; Alexandra Holzinger; Ansgar Jüngel Rigorous derivation of population cross-diffusion systems from moderately interacting particle systems, J. Nonlinear Sci., Volume 31 (2021) no. 6, 94, 38 pages | DOI | Zbl

[6] Li Chen; Ansgar Jüngel Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differ. Equations, Volume 224 (2006) no. 1, pp. 39-59 | DOI | MR | Zbl

[7] Xiuqing Chen; Esther S. Daus; Ansgar Jüngel Global existence analysis of cross-diffusion population systems for multiple species, Arch. Ration. Mech. Anal., Volume 227 (2018) no. 2, pp. 715-747 | DOI | MR | Zbl

[8] Esther S. Daus; Laurent Desvillettes; Helge Dietert About the entropic structure of detailed balanced multi-species cross-diffusion equations, J. Differ. Equations, Volume 266 (2019) no. 7, pp. 3861-3882 | DOI | Zbl

[9] Esther S. Daus; Laurent Desvillettes; Ansgar Jüngel Cross-diffusion systems and fast-reaction limits, Bull. Sci. Math., Volume 159 (2020), 102824, 29 pages | DOI | Zbl

[10] Laurent Desvillettes; Thomas Lepoutre; Ayman Moussa; Ariane Trescases On the entropic structure of reaction-cross diffusion systems, Commun. Partial Differ. Equations, Volume 40 (2015) no. 9, pp. 1705-1747 | DOI | MR | Zbl

[11] Lawrence Evans Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, 2010 | DOI

[12] Joaquin Fontbona; Sylvie Méléard Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium, J. Math. Biol., Volume 70 (2014) no. 4, pp. 829-854 | DOI | Zbl

[13] Luan T. Hoang; Truyen V. Nguyen; Tuoc V. Phan Gradient Estimates and Global Existence of Smooth Solutions to a Cross-Diffusion System, SIAM J. Math. Anal., Volume 47 (2015) no. 3, pp. 2122-2177 | DOI | Zbl

[14] Masato Iida; Masayasu Mimura; Hirokazu Ninomiya Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., Volume 53 (2006) no. 4, pp. 617-641 | DOI | Zbl

[15] Ansgar Jüngel The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, Volume 28 (2015) no. 6, pp. 1963-2001 | DOI | Zbl

[16] Thomas Lepoutre; Ayman Moussa Entropic structure and duality for multiple species cross-diffusion systems, Nonlinear Anal., Theory Methods Appl., Volume 159 (2017), pp. 298-315 | DOI | MR | Zbl

[17] Thomas Lepoutre; Michel Pierre; Guillaume Rolland Global well-posedness of a conservative relaxed cross diffusion system, SIAM J. Math. Anal., Volume 44 (2012) no. 3, pp. 1674-1693 | DOI | MR | Zbl

[18] Alexander Mielke On Evolutionary Γ-Convergence for Gradient Systems, Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity (Lecture Notes in Applied Mathematics and Mechanics), Volume 3, Springer, 2016, pp. 187-249 | DOI

[19] Ayman Moussa Some variants of the classical Aubin-Lions lemma, J. Evol. Equ., Volume 16 (2016) no. 1, pp. 65-93 | DOI | MR | Zbl

[20] Ayman Moussa From Nonlocal to Classical Shigesada–Kawasaki–Teramoto Systems: Triangular Case with Bounded Coefficients, SIAM J. Math. Anal., Volume 52 (2020) no. 1, pp. 42-64 | DOI | Zbl

[21] Sylvia Serfaty Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., Ser. A, Volume 31 (2011) no. 4, pp. 1427-1451 | DOI | Zbl

[22] Nanako Shigesada; Kohkichi Kawasaki; Ei Teramoto Spatial segregation of interacting species, J. Theor. Biol., Volume 79 (1979) no. 1, pp. 83-99 | DOI

[23] Elias M. Stein Singular Integrals and Differentiability Properties of Functions (PMS-30), Princeton University Press, 1970 | DOI

[24] Ariane Trescases On triangular reaction cross-diffusion systems with possible self-diffusion, Bull. Sci. Math., Volume 140 (2016) no. 7, pp. 796-829 | DOI | Zbl

[25] Jonathan Zinsl; Daniel Matthes Transport distances and geodesic convexity for systems of degenerate diffusion equations, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 4, pp. 3397-3438 | DOI | Zbl

Cited by Sources: