We show that every k*-expansive vector field of a closed manifold is rescaling expansive. This improves the main result in [5]. The proof relies on the new notion of singular-expansive flow which will be studied.
Nous montrons que tout champ de vecteurs k*-expansif d’une variété fermée est rééchelonné expansif. Cela améliore le résultat principal dans [5]. La preuve repose sur la nouvelle notion de flux singulier-expansif qui sera étudiée.
Accepted:
Published online:
Keywords: Singular-expansive, k*-expansive, Rescaling expansive
Arnoldo Rojas 1; Xiao Wen 2; Yinong Yang 3
@article{AFST_2024_6_33_2_447_0, author = {Arnoldo Rojas and Xiao Wen and Yinong Yang}, title = {Sufficient conditions for rescaling expansivity}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {447--467}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {2}, year = {2024}, doi = {10.5802/afst.1777}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1777/} }
TY - JOUR AU - Arnoldo Rojas AU - Xiao Wen AU - Yinong Yang TI - Sufficient conditions for rescaling expansivity JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 447 EP - 467 VL - 33 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1777/ DO - 10.5802/afst.1777 LA - en ID - AFST_2024_6_33_2_447_0 ER -
%0 Journal Article %A Arnoldo Rojas %A Xiao Wen %A Yinong Yang %T Sufficient conditions for rescaling expansivity %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 447-467 %V 33 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1777/ %R 10.5802/afst.1777 %G en %F AFST_2024_6_33_2_447_0
Arnoldo Rojas; Xiao Wen; Yinong Yang. Sufficient conditions for rescaling expansivity. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 447-467. doi : 10.5802/afst.1777. https://afst.centre-mersenne.org/articles/10.5802/afst.1777/
[1] The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk SSSR, Volume 234 (1977) no. 2, pp. 336-339 | Zbl
[2] Singular-hyperbolic attractors are chaotic, Trans. Am. Math. Soc., Volume 361 (2009) no. 5, pp. 2431-2485 | DOI | Zbl
[3] Expansive flows of surfaces, Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 2, pp. 505-525 | DOI | Zbl
[4] Expansive flows of the three-sphere, Differ. Geom. Appl., Volume 41 (2015), pp. 91-101 | DOI | Zbl
[5] Rescaled expansivity and separating flows, Discrete Contin. Dyn. Syst., Volume 38 (2018) no. 9, pp. 4433-4447 | DOI | Zbl
[6] Minimal flows and their extensions, North-Holland Mathematics Studies, 153, North-Holland, 1988
[7] Star flows and multisingular hyperbolicity (2018) | arXiv
[8] The centralizer of Komuro-expansive flows and expansive actions, Math. Z., Volume 289 (2018) no. 3-4, pp. 1059-1088 | DOI | Zbl
[9] Entropy for group endomorphisms and homogeneous spaces, Trans. Am. Math. Soc., Volume 153 (1971), pp. 401-414 | DOI | Zbl
[10] Expansive one-parameter flows, J. Differ. Equations, Volume 12 (1972), pp. 180-193 | DOI | Zbl
[11] A strange, strange attractor, The Hopf bifurcation theorem and its applications, Springer, 1976, pp. 368-381 | DOI
[12] Expansive properties of Lorenz attractors, The theory of dynamical systems and its applications to nonlinear problems (Kyoto, 1984), World Scientific, 1984, pp. 4-26
[13] One-parameter flows with the pseudo-orbit tracing property, Monatsh. Math., Volume 98 (1984) no. 3, pp. 219-253 | DOI | Zbl
[14] Expansivity of real flows, Tsukuba J. Math., Volume 14 (1990) no. 1, pp. 1-8 | Zbl
[15] Geometric theory of dynamical systems. An introduction, Springer, 1982 | DOI
[16] Unstable homeomorphisms, Proc. Am. Math. Soc., Volume 1 (1950), pp. 769-774 | Zbl
[17] A rescaled expansiveness for flows, Trans. Am. Math. Soc., Volume 371 (2019) no. 5, pp. 3179-3207 | Zbl
[18] Equivalent definitions of rescaled expansiveness, J. Korean Math. Soc., Volume 55 (2018) no. 3, pp. 593-604 | Zbl
Cited by Sources: