In this note, we describe the Hermitian metrics that leave the total Monge–Ampère volume invariant. In particular, we give several characterizations of the Hermitian metrics which satisfy the comparison principle for the complex Monge–Ampère operator.
Dans cette note, nous décrivons les métriques hermitiennes qui laissent le volume total de Monge–Ampère invariant, et nous donnons plusieurs caractérisations des métriques hermitiennes qui satisfont le principe de comparaison pour l’opérateur complexe de Monge–Ampère.
Accepted:
Published online:
Ionuţ Chiose 1
@article{AFST_2024_6_33_3_575_0, author = {Ionu\c{t} Chiose}, title = {On the invariance of the total {Monge{\textendash}Amp\`ere} volume of {Hermitian} metrics}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {575--579}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {3}, year = {2024}, doi = {10.5802/afst.1781}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1781/} }
TY - JOUR AU - Ionuţ Chiose TI - On the invariance of the total Monge–Ampère volume of Hermitian metrics JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 575 EP - 579 VL - 33 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1781/ DO - 10.5802/afst.1781 LA - en ID - AFST_2024_6_33_3_575_0 ER -
%0 Journal Article %A Ionuţ Chiose %T On the invariance of the total Monge–Ampère volume of Hermitian metrics %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 575-579 %V 33 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1781/ %R 10.5802/afst.1781 %G en %F AFST_2024_6_33_3_575_0
Ionuţ Chiose. On the invariance of the total Monge–Ampère volume of Hermitian metrics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 575-579. doi : 10.5802/afst.1781. https://afst.centre-mersenne.org/articles/10.5802/afst.1781/
[1] Plurisigned hermitian metrics, Trans. Amer. Math. Soc., Volume 376 (2023) no. 7, pp. 4631-4659 | DOI | Zbl
[2] Obstructions to the existence of Kähler structures on compact complex manifolds, Proc. Am. Math. Soc., Volume 142 (2014) no. 10, pp. 3561-3568 | DOI | Zbl
[3] The Kähler rank of compact complex manifolds, J. Geom. Anal., Volume 26 (2016) no. 1, pp. 603-615 | DOI | Zbl
[4] Pluripotential theory on compact Hermitian manifolds, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 1, pp. 91-139 | DOI | Numdam | Zbl
[5] Open problems in pluripotential theory, Complex Var. Elliptic Equ., Volume 61 (2016) no. 7, pp. 902-930 | DOI | Zbl
[6] Pluripotential estimates on compact Hermitian manifolds, Advances in geometric analysis (Advanced Lectures in Mathematics), Volume 21, International Press, 2012, pp. 69-86 | Zbl
[7] Complex Monge–Ampère equations and totally real submanifolds, Adv. Math., Volume 225 (2010) no. 3, pp. 1185-1223 | DOI | Zbl
[8] Quasi-plurisubharmonic envelopes 2: bounds on Monge–Ampère volumes, Algebr. Geom., Volume 9 (2022) no. 6, pp. 688-713 | DOI | Zbl
[9] An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures, Ann. Math., Volume 75 (1962), pp. 190-208 | DOI | Zbl
Cited by Sources: